MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Visualization version   GIF version

Theorem itg2cnlem1 24362
Description: Lemma for itgcn 24443. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2cnlem1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Distinct variable groups:   𝑥,𝑛,𝐹   𝜑,𝑛,𝑥

Proof of Theorem itg2cnlem1
Dummy variables 𝑚 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6683 . . . . . . . . . 10 (𝐹𝑥) ∈ V
2 c0ex 10635 . . . . . . . . . 10 0 ∈ V
31, 2ifex 4515 . . . . . . . . 9 if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V
4 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
54fvmpt2 6779 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
63, 5mpan2 689 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
76mpteq2dv 5162 . . . . . . 7 (𝑥 ∈ ℝ → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
87rneqd 5808 . . . . . 6 (𝑥 ∈ ℝ → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
98supeq1d 8910 . . . . 5 (𝑥 ∈ ℝ → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
109mpteq2ia 5157 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
11 nfcv 2977 . . . . 5 𝑦sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )
12 nfcv 2977 . . . . . . . 8 𝑥
13 nfmpt1 5164 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
1412, 13nfmpt 5163 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
15 nfcv 2977 . . . . . . . . . 10 𝑥𝑚
1614, 15nffv 6680 . . . . . . . . 9 𝑥((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)
17 nfcv 2977 . . . . . . . . 9 𝑥𝑦
1816, 17nffv 6680 . . . . . . . 8 𝑥(((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)
1912, 18nfmpt 5163 . . . . . . 7 𝑥(𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
2019nfrn 5824 . . . . . 6 𝑥ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
21 nfcv 2977 . . . . . 6 𝑥
22 nfcv 2977 . . . . . 6 𝑥 <
2320, 21, 22nfsup 8915 . . . . 5 𝑥sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )
24 fveq2 6670 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦))
2524mpteq2dv 5162 . . . . . . . 8 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)))
26 breq2 5070 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
2726ifbid 4489 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
2827mpteq2dv 5162 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
2928fveq1d 6672 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3029cbvmptv 5169 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
31 eqid 2821 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
32 reex 10628 . . . . . . . . . . . . 13 ℝ ∈ V
3332mptex 6986 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∈ V
3428, 31, 33fvmpt 6768 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3534fveq1d 6672 . . . . . . . . . 10 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3635mpteq2ia 5157 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3730, 36eqtr4i 2847 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
3825, 37syl6eq 2872 . . . . . . 7 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
3938rneqd 5808 . . . . . 6 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
4039supeq1d 8910 . . . . 5 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4111, 23, 40cbvmpt 5167 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4210, 41eqtr3i 2846 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
43 fveq2 6670 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq1d 5076 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
4544, 43ifbieq1d 4490 . . . . . 6 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4645cbvmptv 5169 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4734adantl 484 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
48 nnre 11645 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4948ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ)
5049rexrd 10691 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ*)
51 elioopnf 12832 . . . . . . . . . . 11 (𝑚 ∈ ℝ* → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
53 simpr 487 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54 itg2cn.1 . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶(0[,)+∞))
5554ffnd 6515 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
5655ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn ℝ)
57 elpreima 6828 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5856, 57syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5953, 58mpbirand 705 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝐹𝑦) ∈ (𝑚(,)+∞)))
60 rge0ssre 12845 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
61 fss 6527 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
6254, 60, 61sylancl 588 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℝ)
6362adantr 483 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
6463ffvelrnda 6851 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
6564biantrurd 535 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑚 < (𝐹𝑦) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
6652, 59, 653bitr4d 313 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ 𝑚 < (𝐹𝑦)))
6766notbid 320 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ ¬ 𝑚 < (𝐹𝑦)))
68 eldif 3946 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
6968baib 538 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7069adantl 484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7164, 49lenltd 10786 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ≤ 𝑚 ↔ ¬ 𝑚 < (𝐹𝑦)))
7267, 70, 713bitr4d 313 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝐹𝑦) ≤ 𝑚))
7372ifbid 4489 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
7473mpteq2dva 5161 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
7546, 47, 743eqtr4a 2882 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)))
76 difss 4108 . . . . . 6 (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ
7776a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ)
78 rembl 24141 . . . . . 6 ℝ ∈ dom vol
7978a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ dom vol)
80 fvex 6683 . . . . . . 7 (𝐹𝑦) ∈ V
8180, 2ifex 4515 . . . . . 6 if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V
8281a1i 11 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V)
83 eldifn 4104 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8483adantl 484 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8584iffalsed 4478 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = 0)
86 iftrue 4473 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = (𝐹𝑦))
8786mpteq2ia 5157 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
88 resmpt 5905 . . . . . . . . 9 ((ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦)))
8976, 88ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
9087, 89eqtr4i 2847 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
9154feqmptd 6733 . . . . . . . . 9 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
92 itg2cn.2 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
9391, 92eqeltrrd 2914 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
94 mbfima 24231 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
9592, 62, 94syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
96 cmmbl 24135 . . . . . . . . 9 ((𝐹 “ (𝑚(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
9795, 96syl 17 . . . . . . . 8 (𝜑 → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
98 mbfres 24245 . . . . . . . 8 (((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn ∧ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol) → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
9993, 97, 98syl2anc 586 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
10090, 99eqeltrid 2917 . . . . . 6 (𝜑 → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
101100adantr 483 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10277, 79, 82, 85, 101mbfss 24247 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10375, 102eqeltrd 2913 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∈ MblFn)
10454ffvelrnda 6851 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
105 0e0icopnf 12847 . . . . . 6 0 ∈ (0[,)+∞)
106 ifcl 4511 . . . . . 6 (((𝐹𝑥) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
107104, 105, 106sylancl 588 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
108107adantlr 713 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
10947, 108fmpt3d 6880 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚):ℝ⟶(0[,)+∞))
110 elrege0 12843 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
111104, 110sylib 220 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
112111simpld 497 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
113112adantlr 713 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
114113adantr 483 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ∈ ℝ)
115114leidd 11206 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝐹𝑥))
116 iftrue 4473 . . . . . . . . 9 ((𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
117116adantl 484 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
11848ad3antlr 729 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ∈ ℝ)
119 peano2re 10813 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
120118, 119syl 17 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝑚 + 1) ∈ ℝ)
121 simpr 487 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ 𝑚)
122118lep1d 11571 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ≤ (𝑚 + 1))
123114, 118, 120, 121, 122letrd 10797 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝑚 + 1))
124123iftrued 4475 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) = (𝐹𝑥))
125115, 117, 1243brtr4d 5098 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
126 iffalse 4476 . . . . . . . . 9 (¬ (𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
127126adantl 484 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
128111simprd 498 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
129 0le0 11739 . . . . . . . . . . 11 0 ≤ 0
130 breq2 5070 . . . . . . . . . . . 12 ((𝐹𝑥) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
131 breq2 5070 . . . . . . . . . . . 12 (0 = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ 0 ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
132130, 131ifboth 4505 . . . . . . . . . . 11 ((0 ≤ (𝐹𝑥) ∧ 0 ≤ 0) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
133128, 129, 132sylancl 588 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
134133adantlr 713 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
135134adantr 483 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
136127, 135eqbrtrd 5088 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
137125, 136pm2.61dan 811 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
138137ralrimiva 3182 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
1391, 2ifex 4515 . . . . . . 7 if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V
140139a1i 11 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V)
141 eqidd 2822 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
142 eqidd 2822 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
14379, 108, 140, 141, 142ofrfval2 7427 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
144138, 143mpbird 259 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
145 peano2nn 11650 . . . . . 6 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
146145adantl 484 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147 breq2 5070 . . . . . . . 8 (𝑛 = (𝑚 + 1) → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ (𝑚 + 1)))
148147ifbid 4489 . . . . . . 7 (𝑛 = (𝑚 + 1) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
149148mpteq2dv 5162 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
15032mptex 6986 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ∈ V
151149, 31, 150fvmpt 6768 . . . . 5 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
152146, 151syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
153144, 47, 1523brtr4d 5098 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∘r ≤ ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)))
15462ffvelrnda 6851 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
15534adantl 484 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
156155fveq1d 6672 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
157112leidd 11206 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
158 breq1 5069 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
159 breq1 5069 . . . . . . . . . . . . . 14 (0 = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
160158, 159ifboth 4505 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
161157, 128, 160syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
162161adantlr 713 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
163162ralrimiva 3182 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
16432a1i 11 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
1651, 2ifex 4515 . . . . . . . . . . . 12 if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V
166165a1i 11 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V)
16754feqmptd 6733 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
168167adantr 483 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
169164, 166, 113, 141, 168ofrfval2 7427 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
170163, 169mpbird 259 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹)
171166fmpttd 6879 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)):ℝ⟶V)
172171ffnd 6515 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) Fn ℝ)
17355adantr 483 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
174 inidm 4195 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
175 eqidd 2822 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
176 eqidd 2822 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
177172, 173, 164, 164, 174, 175, 176ofrfval 7417 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦)))
178170, 177mpbid 234 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
179178r19.21bi 3208 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
180179an32s 650 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
181156, 180eqbrtrd 5088 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
182181ralrimiva 3182 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
183 brralrspcev 5126 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
184154, 182, 183syl2anc 586 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
18528fveq2d 6674 . . . . . . 7 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
186185cbvmptv 5169 . . . . . 6 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
18734fveq2d 6674 . . . . . . 7 (𝑚 ∈ ℕ → (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
188187mpteq2ia 5157 . . . . . 6 (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
189186, 188eqtr4i 2847 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
190189rneqi 5807 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
191190supeq1i 8911 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))), ℝ*, < )
19242, 103, 109, 153, 184, 191itg2mono 24354 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ))
193 eqid 2821 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
19427, 193, 165fvmpt 6768 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
195194adantl 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
196161adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
197195, 196eqbrtrd 5088 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
198197ralrimiva 3182 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
1993a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V)
200199fmpttd 6879 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶V)
201200ffnd 6515 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
202 breq1 5069 . . . . . . . . . 10 (𝑤 = ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) → (𝑤 ≤ (𝐹𝑥) ↔ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
203202ralrn 6854 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
204201, 203syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
205198, 204mpbird 259 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥))
206112adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
207 0re 10643 . . . . . . . . . . 11 0 ∈ ℝ
208 ifcl 4511 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
209206, 207, 208sylancl 588 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
210209fmpttd 6879 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶ℝ)
211210frnd 6521 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ)
212 1nn 11649 . . . . . . . . . 10 1 ∈ ℕ
213193, 209dmmptd 6493 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ℕ)
214212, 213eleqtrrid 2920 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
215 n0i 4299 . . . . . . . . . 10 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
216 dm0rn0 5795 . . . . . . . . . . 11 (dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
217216necon3bbii 3063 . . . . . . . . . 10 (¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
218215, 217sylib 220 . . . . . . . . 9 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
219214, 218syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
220 brralrspcev 5126 . . . . . . . . 9 (((𝐹𝑥) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
221112, 205, 220syl2anc 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
222 suprleub 11607 . . . . . . . 8 (((ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧) ∧ (𝐹𝑥) ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
223211, 219, 221, 112, 222syl31anc 1369 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
224205, 223mpbird 259 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥))
225 arch 11895 . . . . . . . . 9 ((𝐹𝑥) ∈ ℝ → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
226112, 225syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
227194ad2antrl 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
228 ltle 10729 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
229112, 48, 228syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
230229impr 457 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ≤ 𝑚)
231230iftrued 4475 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
232227, 231eqtrd 2856 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = (𝐹𝑥))
233201adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
234 simprl 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → 𝑚 ∈ ℕ)
235 fnfvelrn 6848 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
236233, 234, 235syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
237232, 236eqeltrrd 2914 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
238226, 237rexlimddv 3291 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
239211, 219, 221, 238suprubd 11603 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
240211, 219, 221suprcld 11604 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ∈ ℝ)
241240, 112letri3d 10782 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥) ↔ (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ∧ (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))))
242224, 239, 241mpbir2and 711 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥))
243242mpteq2dva 5161 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
244243, 167eqtr4d 2859 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = 𝐹)
245244fveq2d 6674 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = (∫2𝐹))
246192, 245eqtr3d 2858 1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  c0 4291  ifcif 4467   class class class wbr 5066  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  r cofr 7408  supcsup 8904  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cn 11638  (,)cioo 12739  [,)cico 12741  volcvol 24064  MblFncmbf 24215  2citg2 24217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222
This theorem is referenced by:  itg2cn  24364
  Copyright terms: Public domain W3C validator