Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elicc2i | Unicode version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | |
elicc2i.2 |
Ref | Expression |
---|---|
elicc2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 | |
2 | elicc2i.2 | . 2 | |
3 | elicc2 9895 | . 2 | |
4 | 1, 2, 3 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cle 7955 cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: 0elunit 9943 1elunit 9944 divelunit 9959 lincmb01cmp 9960 iccf1o 9961 sinbnd2 11717 cosbnd2 11718 coseq00topi 13550 coseq0negpitopi 13551 cosordlem 13564 cosq34lt1 13565 cos02pilt1 13566 cos11 13568 |
Copyright terms: Public domain | W3C validator |