Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elicc2i | Unicode version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | |
elicc2i.2 |
Ref | Expression |
---|---|
elicc2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 | |
2 | elicc2i.2 | . 2 | |
3 | elicc2 9907 | . 2 | |
4 | 1, 2, 3 | mp2an 426 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 w3a 978 wcel 2146 class class class wbr 3998 (class class class)co 5865 cr 7785 cle 7967 cicc 9860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-icc 9864 |
This theorem is referenced by: 0elunit 9955 1elunit 9956 divelunit 9971 lincmb01cmp 9972 iccf1o 9973 sinbnd2 11728 cosbnd2 11729 coseq00topi 13825 coseq0negpitopi 13826 cosordlem 13839 cosq34lt1 13840 cos02pilt1 13841 cos11 13843 |
Copyright terms: Public domain | W3C validator |