![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 8021 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1re 8020 |
. 2
![]() ![]() ![]() ![]() | |
3 | 0lt1 8148 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | ltleii 8124 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4030 ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: lemulge11 8887 sup3exmid 8978 0le2 9074 1eluzge0 9642 0elunit 10055 1elunit 10056 fldiv4p1lem1div2 10377 q1mod 10430 expge0 10649 expge1 10650 faclbnd3 10817 sqrt1 11193 sqrt2gt1lt2 11196 abs1 11219 cvgratnnlembern 11669 fprodge0 11783 fprodge1 11785 ege2le3 11817 sinbnd 11898 cosbnd 11899 cos2bnd 11906 nn0oddm1d2 12053 flodddiv4 12078 sqnprm 12277 isprm5lem 12282 sqrt2irrap 12321 nn0sqrtelqelz 12347 pythagtriplem3 12408 sinhalfpilem 14967 zabsle1 15156 lgslem2 15158 lgsfcl2 15163 lgsdir2lem1 15185 lgsne0 15195 lgsdinn0 15205 m1lgs 15242 trilpolemclim 15596 trilpolemlt1 15601 nconstwlpolemgt0 15624 |
Copyright terms: Public domain | W3C validator |