| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8146 |
. 2
| |
| 2 | 1re 8145 |
. 2
| |
| 3 | 0lt1 8273 |
. 2
| |
| 4 | 1, 2, 3 | ltleii 8249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: lemulge11 9013 sup3exmid 9104 0le2 9200 1eluzge0 9769 0elunit 10182 1elunit 10183 fldiv4p1lem1div2 10525 q1mod 10578 expge0 10797 expge1 10798 faclbnd3 10965 sqrt1 11557 sqrt2gt1lt2 11560 abs1 11583 cvgratnnlembern 12034 fprodge0 12148 fprodge1 12150 ege2le3 12182 sinbnd 12263 cosbnd 12264 cos2bnd 12271 nn0oddm1d2 12420 flodddiv4 12447 sqnprm 12658 isprm5lem 12663 sqrt2irrap 12702 nn0sqrtelqelz 12728 pythagtriplem3 12790 sinhalfpilem 15465 zabsle1 15678 lgslem2 15680 lgsfcl2 15685 lgsdir2lem1 15707 lgsne0 15717 lgsdinn0 15727 m1lgs 15764 trilpolemclim 16404 trilpolemlt1 16409 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |