Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . 2 | |
2 | 1re 7898 | . 2 | |
3 | 0lt1 8025 | . 2 | |
4 | 1, 2, 3 | ltleii 8001 | 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3982 cc0 7753 c1 7754 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: lemulge11 8761 sup3exmid 8852 0le2 8947 1eluzge0 9512 0elunit 9922 1elunit 9923 fldiv4p1lem1div2 10240 q1mod 10291 expge0 10491 expge1 10492 faclbnd3 10656 sqrt1 10988 sqrt2gt1lt2 10991 abs1 11014 cvgratnnlembern 11464 fprodge0 11578 fprodge1 11580 ege2le3 11612 sinbnd 11693 cosbnd 11694 cos2bnd 11701 nn0oddm1d2 11846 flodddiv4 11871 sqnprm 12068 isprm5lem 12073 sqrt2irrap 12112 nn0sqrtelqelz 12138 pythagtriplem3 12199 sinhalfpilem 13352 zabsle1 13540 lgslem2 13542 lgsfcl2 13547 lgsdir2lem1 13569 lgsne0 13579 lgsdinn0 13589 trilpolemclim 13915 trilpolemlt1 13920 nconstwlpolemgt0 13942 |
Copyright terms: Public domain | W3C validator |