| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8107 |
. 2
| |
| 2 | 1re 8106 |
. 2
| |
| 3 | 0lt1 8234 |
. 2
| |
| 4 | 1, 2, 3 | ltleii 8210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: lemulge11 8974 sup3exmid 9065 0le2 9161 1eluzge0 9730 0elunit 10143 1elunit 10144 fldiv4p1lem1div2 10485 q1mod 10538 expge0 10757 expge1 10758 faclbnd3 10925 sqrt1 11472 sqrt2gt1lt2 11475 abs1 11498 cvgratnnlembern 11949 fprodge0 12063 fprodge1 12065 ege2le3 12097 sinbnd 12178 cosbnd 12179 cos2bnd 12186 nn0oddm1d2 12335 flodddiv4 12362 sqnprm 12573 isprm5lem 12578 sqrt2irrap 12617 nn0sqrtelqelz 12643 pythagtriplem3 12705 sinhalfpilem 15378 zabsle1 15591 lgslem2 15593 lgsfcl2 15598 lgsdir2lem1 15620 lgsne0 15630 lgsdinn0 15640 m1lgs 15677 trilpolemclim 16177 trilpolemlt1 16182 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |