![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 8019 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1re 8018 |
. 2
![]() ![]() ![]() ![]() | |
3 | 0lt1 8146 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | ltleii 8122 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4029 ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: lemulge11 8885 sup3exmid 8976 0le2 9072 1eluzge0 9639 0elunit 10052 1elunit 10053 fldiv4p1lem1div2 10374 q1mod 10427 expge0 10646 expge1 10647 faclbnd3 10814 sqrt1 11190 sqrt2gt1lt2 11193 abs1 11216 cvgratnnlembern 11666 fprodge0 11780 fprodge1 11782 ege2le3 11814 sinbnd 11895 cosbnd 11896 cos2bnd 11903 nn0oddm1d2 12050 flodddiv4 12075 sqnprm 12274 isprm5lem 12279 sqrt2irrap 12318 nn0sqrtelqelz 12344 pythagtriplem3 12405 sinhalfpilem 14926 zabsle1 15115 lgslem2 15117 lgsfcl2 15122 lgsdir2lem1 15144 lgsne0 15154 lgsdinn0 15164 m1lgs 15192 trilpolemclim 15526 trilpolemlt1 15531 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |