| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8072 |
. 2
| |
| 2 | 1re 8071 |
. 2
| |
| 3 | 0lt1 8199 |
. 2
| |
| 4 | 1, 2, 3 | ltleii 8175 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: lemulge11 8939 sup3exmid 9030 0le2 9126 1eluzge0 9695 0elunit 10108 1elunit 10109 fldiv4p1lem1div2 10448 q1mod 10501 expge0 10720 expge1 10721 faclbnd3 10888 sqrt1 11357 sqrt2gt1lt2 11360 abs1 11383 cvgratnnlembern 11834 fprodge0 11948 fprodge1 11950 ege2le3 11982 sinbnd 12063 cosbnd 12064 cos2bnd 12071 nn0oddm1d2 12220 flodddiv4 12247 sqnprm 12458 isprm5lem 12463 sqrt2irrap 12502 nn0sqrtelqelz 12528 pythagtriplem3 12590 sinhalfpilem 15263 zabsle1 15476 lgslem2 15478 lgsfcl2 15483 lgsdir2lem1 15505 lgsne0 15515 lgsdinn0 15525 m1lgs 15562 trilpolemclim 15975 trilpolemlt1 15980 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |