![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0le1 | Unicode version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7549 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1re 7548 |
. 2
![]() ![]() ![]() ![]() | |
3 | 0lt1 7671 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | ltleii 7648 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 3851 ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1re 7500 ax-addrcl 7503 ax-0lt1 7512 ax-rnegex 7515 ax-pre-ltirr 7518 ax-pre-lttrn 7520 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-cnv 4460 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 |
This theorem is referenced by: lemulge11 8388 0le2 8573 1eluzge0 9123 0elunit 9464 1elunit 9465 fldiv4p1lem1div2 9773 q1mod 9824 expge0 10052 expge1 10053 faclbnd3 10212 sqrt1 10540 sqrt2gt1lt2 10543 abs1 10566 cvgratnnlembern 10978 ege2le3 11022 sinbnd 11104 cosbnd 11105 cos2bnd 11112 nn0oddm1d2 11248 flodddiv4 11273 sqnprm 11456 sqrt2irrap 11497 nn0sqrtelqelz 11523 |
Copyright terms: Public domain | W3C validator |