ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdir Unicode version

Theorem subdir 8532
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
subdir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )

Proof of Theorem subdir
StepHypRef Expression
1 subdi 8531 . . 3  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
213coml 1234 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
3 subcl 8345 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
4 mulcom 8128 . . . 4  |-  ( ( ( A  -  B
)  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  x.  C
)  =  ( C  x.  ( A  -  B ) ) )
53, 4sylan 283 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  -  B )  x.  C )  =  ( C  x.  ( A  -  B ) ) )
653impa 1218 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( C  x.  ( A  -  B
) ) )
7 mulcom 8128 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
873adant2 1040 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
9 mulcom 8128 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 1039 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
118, 10oveq12d 6019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  -  ( B  x.  C ) )  =  ( ( C  x.  A )  -  ( C  x.  B
) ) )
122, 6, 113eqtr4d 2272 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    x. cmul 8004    - cmin 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by:  mul02  8533  mulneg1  8541  subdiri  8554  subdird  8561  dvds2sub  12337  cncongr1  12625  cncongr2  12626  eulerthlemth  12754  pythagtriplem1  12788
  Copyright terms: Public domain W3C validator