ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  congr Unicode version

Theorem congr 12102
Description: Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer  A is congruent to an integer  B modulo  M if their difference is a multiple of 
M. See also the definition in [ApostolNT] p. 104: "...  a is congruent to  b modulo  m, and we write  a  ==  b (mod  m) if  m divides the difference  a  -  b", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
congr  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
Distinct variable groups:    A, n    B, n    n, M

Proof of Theorem congr
StepHypRef Expression
1 moddvds 11808 . . 3  |-  ( ( M  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
213coml 1210 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
3 simp3 999 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  M  e.  NN )
43nnzd 9376 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
5 zsubcl 9296 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
653adant3 1017 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  ( A  -  B )  e.  ZZ )
7 divides 11798 . . 3  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( M  ||  ( A  -  B
)  <->  E. n  e.  ZZ  ( n  x.  M
)  =  ( A  -  B ) ) )
84, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
92, 8bitrd 188 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877    x. cmul 7818    - cmin 8130   NNcn 8921   ZZcz 9255    mod cmo 10324    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272  df-mod 10325  df-dvds 11797
This theorem is referenced by:  cncongr1  12105
  Copyright terms: Public domain W3C validator