ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  congr Unicode version

Theorem congr 12131
Description: Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer  A is congruent to an integer  B modulo  M if their difference is a multiple of 
M. See also the definition in [ApostolNT] p. 104: "...  a is congruent to  b modulo  m, and we write  a  ==  b (mod  m) if  m divides the difference  a  -  b", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
congr  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
Distinct variable groups:    A, n    B, n    n, M

Proof of Theorem congr
StepHypRef Expression
1 moddvds 11837 . . 3  |-  ( ( M  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
213coml 1212 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
3 simp3 1001 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  M  e.  NN )
43nnzd 9403 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
5 zsubcl 9323 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
653adant3 1019 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  ( A  -  B )  e.  ZZ )
7 divides 11827 . . 3  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( M  ||  ( A  -  B
)  <->  E. n  e.  ZZ  ( n  x.  M
)  =  ( A  -  B ) ) )
84, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
92, 8bitrd 188 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  E. n  e.  ZZ  ( n  x.  M )  =  ( A  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   E.wrex 2469   class class class wbr 4018  (class class class)co 5895    x. cmul 7845    - cmin 8157   NNcn 8948   ZZcz 9282    mod cmo 10352    || cdvds 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-n0 9206  df-z 9283  df-q 9649  df-rp 9683  df-fl 10300  df-mod 10353  df-dvds 11826
This theorem is referenced by:  cncongr1  12134
  Copyright terms: Public domain W3C validator