Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addassnq0lemcl | Unicode version |
Description: A natural number closure law. Lemma for addassnq0 7361. (Contributed by Jim Kingdon, 3-Dec-2019.) |
Ref | Expression |
---|---|
addassnq0lemcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7208 | . . . . 5 | |
2 | nnmcl 6417 | . . . . 5 | |
3 | 1, 2 | sylan2 284 | . . . 4 |
4 | 3 | ad2ant2rl 503 | . . 3 |
5 | pinn 7208 | . . . . 5 | |
6 | nnmcl 6417 | . . . . 5 | |
7 | 5, 6 | sylan 281 | . . . 4 |
8 | 7 | ad2ant2lr 502 | . . 3 |
9 | nnacl 6416 | . . 3 | |
10 | 4, 8, 9 | syl2anc 409 | . 2 |
11 | mulpiord 7216 | . . . 4 | |
12 | mulclpi 7227 | . . . 4 | |
13 | 11, 12 | eqeltrrd 2232 | . . 3 |
14 | 13 | ad2ant2l 500 | . 2 |
15 | 10, 14 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2125 com 4543 (class class class)co 5814 coa 6350 comu 6351 cnpi 7171 cmi 7173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-oadd 6357 df-omul 6358 df-ni 7203 df-mi 7205 |
This theorem is referenced by: addassnq0 7361 |
Copyright terms: Public domain | W3C validator |