ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcl Unicode version

Theorem nnmcl 6627
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )

Proof of Theorem nnmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . 5  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
21eleq1d 2298 . . . 4  |-  ( x  =  B  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  B )  e.  om ) )
32imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  .o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) ) )
4 oveq2 6009 . . . . 5  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
54eleq1d 2298 . . . 4  |-  ( x  =  (/)  ->  ( ( A  .o  x )  e.  om  <->  ( A  .o  (/) )  e.  om ) )
6 oveq2 6009 . . . . 5  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
76eleq1d 2298 . . . 4  |-  ( x  =  y  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  y )  e.  om ) )
8 oveq2 6009 . . . . 5  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
98eleq1d 2298 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  e.  om  <->  ( A  .o  suc  y
)  e.  om )
)
10 nnm0 6621 . . . . 5  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
11 peano1 4686 . . . . 5  |-  (/)  e.  om
1210, 11eqeltrdi 2320 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
13 nnacl 6626 . . . . . . . 8  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  .o  y )  +o  A
)  e.  om )
1413expcom 116 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  .o  y
)  e.  om  ->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1514adantr 276 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( ( A  .o  y )  +o  A
)  e.  om )
)
16 nnmsuc 6623 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
1716eleq1d 2298 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  e.  om  <->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1815, 17sylibrd 169 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( A  .o  suc  y )  e.  om ) )
1918expcom 116 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  .o  y
)  e.  om  ->  ( A  .o  suc  y
)  e.  om )
) )
205, 7, 9, 12, 19finds2 4693 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  .o  x )  e.  om ) )
213, 20vtoclga 2867 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) )
2221impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   (/)c0 3491   suc csuc 4456   omcom 4682  (class class class)co 6001    +o coa 6559    .o comu 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567
This theorem is referenced by:  nnmcli  6629  nndi  6632  nnmass  6633  nnmsucr  6634  nnmordi  6662  nnmord  6663  nnmword  6664  mulclpi  7515  enq0tr  7621  addcmpblnq0  7630  mulcmpblnq0  7631  mulcanenq0ec  7632  addclnq0  7638  mulclnq0  7639  nqpnq0nq  7640  distrnq0  7646  addassnq0lemcl  7648  addassnq0  7649
  Copyright terms: Public domain W3C validator