Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmcl | Unicode version |
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . 5 | |
2 | 1 | eleq1d 2239 | . . . 4 |
3 | 2 | imbi2d 229 | . . 3 |
4 | oveq2 5861 | . . . . 5 | |
5 | 4 | eleq1d 2239 | . . . 4 |
6 | oveq2 5861 | . . . . 5 | |
7 | 6 | eleq1d 2239 | . . . 4 |
8 | oveq2 5861 | . . . . 5 | |
9 | 8 | eleq1d 2239 | . . . 4 |
10 | nnm0 6454 | . . . . 5 | |
11 | peano1 4578 | . . . . 5 | |
12 | 10, 11 | eqeltrdi 2261 | . . . 4 |
13 | nnacl 6459 | . . . . . . . 8 | |
14 | 13 | expcom 115 | . . . . . . 7 |
15 | 14 | adantr 274 | . . . . . 6 |
16 | nnmsuc 6456 | . . . . . . 7 | |
17 | 16 | eleq1d 2239 | . . . . . 6 |
18 | 15, 17 | sylibrd 168 | . . . . 5 |
19 | 18 | expcom 115 | . . . 4 |
20 | 5, 7, 9, 12, 19 | finds2 4585 | . . 3 |
21 | 3, 20 | vtoclga 2796 | . 2 |
22 | 21 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 c0 3414 csuc 4350 com 4574 (class class class)co 5853 coa 6392 comu 6393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 |
This theorem is referenced by: nnmcli 6462 nndi 6465 nnmass 6466 nnmsucr 6467 nnmordi 6495 nnmord 6496 nnmword 6497 mulclpi 7290 enq0tr 7396 addcmpblnq0 7405 mulcmpblnq0 7406 mulcanenq0ec 7407 addclnq0 7413 mulclnq0 7414 nqpnq0nq 7415 distrnq0 7421 addassnq0lemcl 7423 addassnq0 7424 |
Copyright terms: Public domain | W3C validator |