ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanpig GIF version

Theorem addcanpig 7529
Description: Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
Assertion
Ref Expression
addcanpig ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcanpig
StepHypRef Expression
1 addpiord 7511 . . . . 5 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
213adant3 1041 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
3 addpiord 7511 . . . . 5 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
433adant2 1040 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
52, 4eqeq12d 2244 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +o 𝐵) = (𝐴 +o 𝐶)))
6 pinn 7504 . . . 4 (𝐴N𝐴 ∈ ω)
7 pinn 7504 . . . 4 (𝐵N𝐵 ∈ ω)
8 pinn 7504 . . . 4 (𝐶N𝐶 ∈ ω)
9 nnacan 6666 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
109biimpd 144 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
116, 7, 8, 10syl3an 1313 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
125, 11sylbid 150 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
13 oveq2 6015 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
1412, 13impbid1 142 1 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  ωcom 4682  (class class class)co 6007   +o coa 6565  Ncnpi 7467   +N cpli 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-ni 7499  df-pli 7500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator