ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanpig GIF version

Theorem addcanpig 7156
Description: Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
Assertion
Ref Expression
addcanpig ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcanpig
StepHypRef Expression
1 addpiord 7138 . . . . 5 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
213adant3 1001 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
3 addpiord 7138 . . . . 5 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
433adant2 1000 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
52, 4eqeq12d 2154 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +o 𝐵) = (𝐴 +o 𝐶)))
6 pinn 7131 . . . 4 (𝐴N𝐴 ∈ ω)
7 pinn 7131 . . . 4 (𝐵N𝐵 ∈ ω)
8 pinn 7131 . . . 4 (𝐶N𝐶 ∈ ω)
9 nnacan 6408 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
109biimpd 143 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
116, 7, 8, 10syl3an 1258 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
125, 11sylbid 149 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
13 oveq2 5782 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
1412, 13impbid1 141 1 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 962   = wceq 1331  wcel 1480  ωcom 4504  (class class class)co 5774   +o coa 6310  Ncnpi 7094   +N cpli 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-ni 7126  df-pli 7127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator