![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcanpig | GIF version |
Description: Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.) |
Ref | Expression |
---|---|
addcanpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 6776 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) | |
2 | 1 | 3adant3 959 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) |
3 | addpiord 6776 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +N 𝐶) = (𝐴 +𝑜 𝐶)) | |
4 | 3 | 3adant2 958 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +N 𝐶) = (𝐴 +𝑜 𝐶)) |
5 | 2, 4 | eqeq12d 2097 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶))) |
6 | pinn 6769 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
7 | pinn 6769 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
8 | pinn 6769 | . . . 4 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
9 | nnacan 6199 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶)) | |
10 | 9 | biimpd 142 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) → 𝐵 = 𝐶)) |
11 | 6, 7, 8, 10 | syl3an 1212 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) → 𝐵 = 𝐶)) |
12 | 5, 11 | sylbid 148 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶)) |
13 | oveq2 5597 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) | |
14 | 12, 13 | impbid1 140 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ωcom 4367 (class class class)co 5589 +𝑜 coa 6108 Ncnpi 6732 +N cpli 6733 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-1st 5844 df-2nd 5845 df-recs 6000 df-irdg 6065 df-oadd 6115 df-ni 6764 df-pli 6765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |