ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0addcl Unicode version

Theorem ge0addcl 10123
Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
ge0addcl  |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  ( 0 [,) +oo ) )  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)

Proof of Theorem ge0addcl
StepHypRef Expression
1 elrege0 10118 . 2  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
2 elrege0 10118 . 2  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
3 readdcl 8071 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
43ad2ant2r 509 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5 addge0 8544 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
65an4s 588 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7 elrege0 10118 . . 3  |-  ( ( A  +  B )  e.  ( 0 [,) +oo )  <->  ( ( A  +  B )  e.  RR  /\  0  <_ 
( A  +  B
) ) )
84, 6, 7sylanbrc 417 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)
91, 2, 8syl2anb 291 1  |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  ( 0 [,) +oo ) )  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   RRcr 7944   0cc0 7945    + caddc 7948   +oocpnf 8124    <_ cle 8128   [,)cico 10032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-ico 10036
This theorem is referenced by:  fsumge0  11845  rege0subm  14421
  Copyright terms: Public domain W3C validator