| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > basendx | Unicode version | ||
| Description: Index value of the base
set extractor.
 
     Use of this theorem is discouraged since the particular value  The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12841. Although we have a few theorems such as basendxnplusgndx 12802, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)  | 
| Ref | Expression | 
|---|---|
| basendx | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-base 12684 | 
. 2
 | |
| 2 | 1nn 9001 | 
. 2
 | |
| 3 | 1, 2 | ndxarg 12701 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 | 
| This theorem is referenced by: basendxltplusgndx 12791 1strstrg 12794 2strstrg 12796 2strbasg 12797 2stropg 12798 2strstr1g 12799 rngstrg 12812 starvndxnbasendx 12819 scandxnbasendx 12831 vscandxnbasendx 12836 lmodstrd 12841 ipndxnbasendx 12849 basendxlttsetndx 12867 topgrpstrd 12873 basendxltplendx 12881 basendxltdsndx 12892 basendxltunifndx 12902 setsmsbasg 14715 | 
| Copyright terms: Public domain | W3C validator |