Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > basendx | Unicode version |
Description: Index value of the base
set extractor.
Use of this theorem is discouraged since the particular value for the index is an implementation detail. It is generally sufficient to work with and use theorems such as baseid 12469 and basendxnn 12471. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12551. Although we have a few theorems such as basendxnplusgndx 12524, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
Ref | Expression |
---|---|
basendx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 12422 | . 2 Slot | |
2 | 1nn 8889 | . 2 | |
3 | 1, 2 | ndxarg 12439 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cfv 5198 c1 7775 cnx 12413 cbs 12416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 |
This theorem is referenced by: 1strstrg 12516 2strstrg 12518 2strbasg 12519 2stropg 12520 2strstr1g 12521 rngstrg 12533 lmodstrd 12551 topgrpstrd 12569 setsmsbasg 13273 |
Copyright terms: Public domain | W3C validator |