ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basendx GIF version

Theorem basendx 12760
Description: Index value of the base set extractor.

Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 12759 and basendxnn 12761.

The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12868. Although we have a few theorems such as basendxnplusgndx 12829, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices).

(New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)

Assertion
Ref Expression
basendx (Base‘ndx) = 1

Proof of Theorem basendx
StepHypRef Expression
1 df-base 12711 . 2 Base = Slot 1
2 1nn 9020 . 2 1 ∈ ℕ
31, 2ndxarg 12728 1 (Base‘ndx) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cfv 5259  1c1 7899  ndxcnx 12702  Basecbs 12705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-inn 9010  df-ndx 12708  df-slot 12709  df-base 12711
This theorem is referenced by:  basendxltplusgndx  12818  1strstrg  12821  2strstrg  12823  2strbasg  12824  2stropg  12825  2strstr1g  12826  rngstrg  12839  starvndxnbasendx  12846  scandxnbasendx  12858  vscandxnbasendx  12863  lmodstrd  12868  ipndxnbasendx  12876  basendxlttsetndx  12894  topgrpstrd  12900  basendxltplendx  12908  basendxnocndx  12917  basendxltdsndx  12923  basendxltunifndx  12933  setsmsbasg  14801
  Copyright terms: Public domain W3C validator