| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendx | GIF version | ||
| Description: Index value of the base
set extractor.
Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 13094 and basendxnn 13096. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 13205. Although we have a few theorems such as basendxnplusgndx 13166, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| basendx | ⊢ (Base‘ndx) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 13046 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 9129 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13063 | 1 ⊢ (Base‘ndx) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ‘cfv 5318 1c1 8008 ndxcnx 13037 Basecbs 13040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 |
| This theorem is referenced by: basendxltplusgndx 13154 1strstrg 13157 2strstrg 13160 2strbasg 13161 2stropg 13162 2strstr1g 13163 rngstrg 13176 starvndxnbasendx 13183 scandxnbasendx 13195 vscandxnbasendx 13200 lmodstrd 13205 ipndxnbasendx 13213 basendxlttsetndx 13231 topgrpstrd 13237 basendxltplendx 13245 basendxnocndx 13254 basendxltdsndx 13260 basendxltunifndx 13270 setsmsbasg 15161 basendxltedgfndx 15819 |
| Copyright terms: Public domain | W3C validator |