| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendx | GIF version | ||
| Description: Index value of the base
set extractor.
Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 12759 and basendxnn 12761. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12868. Although we have a few theorems such as basendxnplusgndx 12829, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| basendx | ⊢ (Base‘ndx) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 12711 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 9020 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 12728 | 1 ⊢ (Base‘ndx) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ‘cfv 5259 1c1 7899 ndxcnx 12702 Basecbs 12705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9010 df-ndx 12708 df-slot 12709 df-base 12711 |
| This theorem is referenced by: basendxltplusgndx 12818 1strstrg 12821 2strstrg 12823 2strbasg 12824 2stropg 12825 2strstr1g 12826 rngstrg 12839 starvndxnbasendx 12846 scandxnbasendx 12858 vscandxnbasendx 12863 lmodstrd 12868 ipndxnbasendx 12876 basendxlttsetndx 12894 topgrpstrd 12900 basendxltplendx 12908 basendxnocndx 12917 basendxltdsndx 12923 basendxltunifndx 12933 setsmsbasg 14801 |
| Copyright terms: Public domain | W3C validator |