| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendx | GIF version | ||
| Description: Index value of the base
set extractor.
Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 13052 and basendxnn 13054. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 13163. Although we have a few theorems such as basendxnplusgndx 13124, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| basendx | ⊢ (Base‘ndx) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 13004 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 9089 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13021 | 1 ⊢ (Base‘ndx) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ‘cfv 5294 1c1 7968 ndxcnx 12995 Basecbs 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 |
| This theorem is referenced by: basendxltplusgndx 13112 1strstrg 13115 2strstrg 13118 2strbasg 13119 2stropg 13120 2strstr1g 13121 rngstrg 13134 starvndxnbasendx 13141 scandxnbasendx 13153 vscandxnbasendx 13158 lmodstrd 13163 ipndxnbasendx 13171 basendxlttsetndx 13189 topgrpstrd 13195 basendxltplendx 13203 basendxnocndx 13212 basendxltdsndx 13218 basendxltunifndx 13228 setsmsbasg 15118 basendxltedgfndx 15776 |
| Copyright terms: Public domain | W3C validator |