| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendx | GIF version | ||
| Description: Index value of the base
set extractor.
Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 12757 and basendxnn 12759. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12866. Although we have a few theorems such as basendxnplusgndx 12827, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| basendx | ⊢ (Base‘ndx) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 12709 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 9018 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 12726 | 1 ⊢ (Base‘ndx) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ‘cfv 5259 1c1 7897 ndxcnx 12700 Basecbs 12703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: basendxltplusgndx 12816 1strstrg 12819 2strstrg 12821 2strbasg 12822 2stropg 12823 2strstr1g 12824 rngstrg 12837 starvndxnbasendx 12844 scandxnbasendx 12856 vscandxnbasendx 12861 lmodstrd 12866 ipndxnbasendx 12874 basendxlttsetndx 12892 topgrpstrd 12898 basendxltplendx 12906 basendxnocndx 12915 basendxltdsndx 12921 basendxltunifndx 12931 setsmsbasg 14799 |
| Copyright terms: Public domain | W3C validator |