| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basvtxval2dom | GIF version | ||
| Description: The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| basvtxval.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| basvtxval2dom.d | ⊢ (𝜑 → 2o ≼ dom 𝐺) |
| basvtxval.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
| basvtxval.b | ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| basvtxval2dom | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basvtxval.s | . . . 4 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 2 | structex 12786 | . . . 4 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | structn0fun 12787 | . . . 4 ⊢ (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅})) | |
| 5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) |
| 6 | basvtxval2dom.d | . . 3 ⊢ (𝜑 → 2o ≼ dom 𝐺) | |
| 7 | funvtxdm2domval 15568 | . . 3 ⊢ ((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1249 | . 2 ⊢ (𝜑 → (Vtx‘𝐺) = (Base‘𝐺)) |
| 9 | basvtxval.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
| 10 | basvtxval.b | . . 3 ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝐺) | |
| 11 | 1, 9, 10 | opelstrbas 12889 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝐺)) |
| 12 | 8, 11 | eqtr4d 2240 | 1 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 ∅c0 3459 {csn 3632 〈cop 3635 class class class wbr 4043 dom cdm 4674 Fun wfun 5264 ‘cfv 5270 2oc2o 6495 ≼ cdom 6825 Struct cstr 12770 ndxcnx 12771 Basecbs 12774 Vtxcvtx 15553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-fv 5278 df-1st 6225 df-1o 6501 df-2o 6502 df-dom 6828 df-inn 9036 df-struct 12776 df-ndx 12777 df-slot 12778 df-base 12780 df-vtx 15555 |
| This theorem is referenced by: structvtxval 15578 structgrssvtx 15581 |
| Copyright terms: Public domain | W3C validator |