ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structgrssvtx Unicode version

Theorem structgrssvtx 15837
Description: The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structgrssvtx.g  |-  ( ph  ->  G Struct  X )
structgrssvtx.v  |-  ( ph  ->  V  e.  Y )
structgrssvtx.e  |-  ( ph  ->  E  e.  Z )
structgrssvtx.s  |-  ( ph  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  C_  G
)
Assertion
Ref Expression
structgrssvtx  |-  ( ph  ->  (Vtx `  G )  =  V )

Proof of Theorem structgrssvtx
StepHypRef Expression
1 structgrssvtx.g . 2  |-  ( ph  ->  G Struct  X )
2 structgrssvtx.v . . 3  |-  ( ph  ->  V  e.  Y )
3 structgrssvtx.e . . 3  |-  ( ph  ->  E  e.  Z )
4 structgrssvtx.s . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  C_  G
)
51, 2, 3, 4structgr2slots2dom 15836 . 2  |-  ( ph  ->  2o  ~<_  dom  G )
6 basendxnn 13083 . . . . . 6  |-  ( Base `  ndx )  e.  NN
7 opexg 4313 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  Y )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
86, 2, 7sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
9 edgfndxnn 15803 . . . . . 6  |-  (.ef `  ndx )  e.  NN
10 opexg 4313 . . . . . 6  |-  ( ( (.ef `  ndx )  e.  NN  /\  E  e.  Z )  ->  <. (.ef ` 
ndx ) ,  E >.  e.  _V )
119, 3, 10sylancr 414 . . . . 5  |-  ( ph  -> 
<. (.ef `  ndx ) ,  E >.  e.  _V )
12 prssg 3824 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. (.ef `  ndx ) ,  E >.  e. 
_V )  ->  (
( <. ( Base `  ndx ) ,  V >.  e.  G  /\  <. (.ef ` 
ndx ) ,  E >.  e.  G )  <->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  C_  G )
)
138, 11, 12syl2anc 411 . . . 4  |-  ( ph  ->  ( ( <. ( Base `  ndx ) ,  V >.  e.  G  /\  <. (.ef `  ndx ) ,  E >.  e.  G )  <->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  C_  G )
)
144, 13mpbird 167 . . 3  |-  ( ph  ->  ( <. ( Base `  ndx ) ,  V >.  e.  G  /\  <. (.ef ` 
ndx ) ,  E >.  e.  G ) )
1514simpld 112 . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  G )
161, 5, 2, 15basvtxval2dom 15829 1  |-  ( ph  ->  (Vtx `  G )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   <.cop 3669   class class class wbr 4082   ` cfv 5317   NNcn 9106   Struct cstr 13023   ndxcnx 13024   Basecbs 13027  .efcedgf 15799  Vtxcvtx 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator