ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blrn GIF version

Theorem blrn 13997
Description: Membership in the range of the ball function. Note that ran (ballβ€˜π·) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blrn (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘₯ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐴 = (π‘₯(ballβ€˜π·)π‘Ÿ)))
Distinct variable groups:   π‘₯,π‘Ÿ,𝐴   𝐷,π‘Ÿ,π‘₯   𝑋,π‘Ÿ,π‘₯

Proof of Theorem blrn
StepHypRef Expression
1 blf 13995 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
2 ffn 5367 . 2 ((ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋 β†’ (ballβ€˜π·) Fn (𝑋 Γ— ℝ*))
3 ovelrn 6025 . 2 ((ballβ€˜π·) Fn (𝑋 Γ— ℝ*) β†’ (𝐴 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘₯ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐴 = (π‘₯(ballβ€˜π·)π‘Ÿ)))
41, 2, 33syl 17 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘₯ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐴 = (π‘₯(ballβ€˜π·)π‘Ÿ)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456  π’« cpw 3577   Γ— cxp 4626  ran crn 4629   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877  β„*cxr 7993  βˆžMetcxmet 13525  ballcbl 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-psmet 13532  df-xmet 13533  df-bl 13535
This theorem is referenced by:  blss  14013  xmettxlem  14094  blssioo  14130
  Copyright terms: Public domain W3C validator