ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss1 Unicode version

Theorem cnss1 13020
Description: If the topology  K is finer than  J, then there are more continuous functions from  K than from  J. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1  |-  X  = 
U. J
Assertion
Ref Expression
cnss1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )

Proof of Theorem cnss1
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6  |-  X  = 
U. J
2 eqid 2170 . . . . . 6  |-  U. L  =  U. L
31, 2cnf 12998 . . . . 5  |-  ( f  e.  ( J  Cn  L )  ->  f : X --> U. L )
43adantl 275 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f : X --> U. L )
5 simpllr 529 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  J  C_  K )
6 cnima 13014 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  L )  /\  x  e.  L )  ->  ( `' f "
x )  e.  J
)
76adantll 473 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  J )
85, 7sseldd 3148 . . . . 5  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  K )
98ralrimiva 2543 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  A. x  e.  L  ( `' f " x )  e.  K )
10 simpll 524 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  K  e.  (TopOn `  X )
)
11 cntop2 12996 . . . . . . 7  |-  ( f  e.  ( J  Cn  L )  ->  L  e.  Top )
1211adantl 275 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  Top )
132toptopon 12810 . . . . . 6  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
1412, 13sylib 121 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  (TopOn `  U. L ) )
15 iscn 12991 . . . . 5  |-  ( ( K  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L ) )  ->  ( f  e.  ( K  Cn  L
)  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
1610, 14, 15syl2anc 409 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  (
f  e.  ( K  Cn  L )  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
174, 9, 16mpbir2and 939 . . 3  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f  e.  ( K  Cn  L
) )
1817ex 114 . 2  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (
f  e.  ( J  Cn  L )  -> 
f  e.  ( K  Cn  L ) ) )
1918ssrdv 3153 1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   U.cuni 3796   `'ccnv 4610   "cima 4614   -->wf 5194   ` cfv 5198  (class class class)co 5853   Topctop 12789  TopOnctopon 12802    Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator