ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss1 Unicode version

Theorem cnss1 14546
Description: If the topology  K is finer than  J, then there are more continuous functions from  K than from  J. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1  |-  X  = 
U. J
Assertion
Ref Expression
cnss1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )

Proof of Theorem cnss1
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6  |-  X  = 
U. J
2 eqid 2196 . . . . . 6  |-  U. L  =  U. L
31, 2cnf 14524 . . . . 5  |-  ( f  e.  ( J  Cn  L )  ->  f : X --> U. L )
43adantl 277 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f : X --> U. L )
5 simpllr 534 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  J  C_  K )
6 cnima 14540 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  L )  /\  x  e.  L )  ->  ( `' f "
x )  e.  J
)
76adantll 476 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  J )
85, 7sseldd 3185 . . . . 5  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  K )
98ralrimiva 2570 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  A. x  e.  L  ( `' f " x )  e.  K )
10 simpll 527 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  K  e.  (TopOn `  X )
)
11 cntop2 14522 . . . . . . 7  |-  ( f  e.  ( J  Cn  L )  ->  L  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  Top )
132toptopon 14338 . . . . . 6  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  (TopOn `  U. L ) )
15 iscn 14517 . . . . 5  |-  ( ( K  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L ) )  ->  ( f  e.  ( K  Cn  L
)  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
1610, 14, 15syl2anc 411 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  (
f  e.  ( K  Cn  L )  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
174, 9, 16mpbir2and 946 . . 3  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f  e.  ( K  Cn  L
) )
1817ex 115 . 2  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (
f  e.  ( J  Cn  L )  -> 
f  e.  ( K  Cn  L ) ) )
1918ssrdv 3190 1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   U.cuni 3840   `'ccnv 4663   "cima 4667   -->wf 5255   ` cfv 5259  (class class class)co 5925   Topctop 14317  TopOnctopon 14330    Cn ccn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-top 14318  df-topon 14331  df-cn 14508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator