ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss1 Unicode version

Theorem cnss1 14900
Description: If the topology  K is finer than  J, then there are more continuous functions from  K than from  J. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1  |-  X  = 
U. J
Assertion
Ref Expression
cnss1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )

Proof of Theorem cnss1
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6  |-  X  = 
U. J
2 eqid 2229 . . . . . 6  |-  U. L  =  U. L
31, 2cnf 14878 . . . . 5  |-  ( f  e.  ( J  Cn  L )  ->  f : X --> U. L )
43adantl 277 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f : X --> U. L )
5 simpllr 534 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  J  C_  K )
6 cnima 14894 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  L )  /\  x  e.  L )  ->  ( `' f "
x )  e.  J
)
76adantll 476 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  J )
85, 7sseldd 3225 . . . . 5  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  K )
98ralrimiva 2603 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  A. x  e.  L  ( `' f " x )  e.  K )
10 simpll 527 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  K  e.  (TopOn `  X )
)
11 cntop2 14876 . . . . . . 7  |-  ( f  e.  ( J  Cn  L )  ->  L  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  Top )
132toptopon 14692 . . . . . 6  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  (TopOn `  U. L ) )
15 iscn 14871 . . . . 5  |-  ( ( K  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L ) )  ->  ( f  e.  ( K  Cn  L
)  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
1610, 14, 15syl2anc 411 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  (
f  e.  ( K  Cn  L )  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
174, 9, 16mpbir2and 950 . . 3  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f  e.  ( K  Cn  L
) )
1817ex 115 . 2  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (
f  e.  ( J  Cn  L )  -> 
f  e.  ( K  Cn  L ) ) )
1918ssrdv 3230 1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   U.cuni 3888   `'ccnv 4718   "cima 4722   -->wf 5314   ` cfv 5318  (class class class)co 6001   Topctop 14671  TopOnctopon 14684    Cn ccn 14859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator