ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss1 Unicode version

Theorem cnss1 13729
Description: If the topology  K is finer than  J, then there are more continuous functions from  K than from  J. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1  |-  X  = 
U. J
Assertion
Ref Expression
cnss1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )

Proof of Theorem cnss1
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6  |-  X  = 
U. J
2 eqid 2177 . . . . . 6  |-  U. L  =  U. L
31, 2cnf 13707 . . . . 5  |-  ( f  e.  ( J  Cn  L )  ->  f : X --> U. L )
43adantl 277 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f : X --> U. L )
5 simpllr 534 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  J  C_  K )
6 cnima 13723 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  L )  /\  x  e.  L )  ->  ( `' f "
x )  e.  J
)
76adantll 476 . . . . . 6  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  J )
85, 7sseldd 3157 . . . . 5  |-  ( ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L ) )  /\  x  e.  L )  ->  ( `' f " x
)  e.  K )
98ralrimiva 2550 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  A. x  e.  L  ( `' f " x )  e.  K )
10 simpll 527 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  K  e.  (TopOn `  X )
)
11 cntop2 13705 . . . . . . 7  |-  ( f  e.  ( J  Cn  L )  ->  L  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  Top )
132toptopon 13521 . . . . . 6  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  L  e.  (TopOn `  U. L ) )
15 iscn 13700 . . . . 5  |-  ( ( K  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L ) )  ->  ( f  e.  ( K  Cn  L
)  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
1610, 14, 15syl2anc 411 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  (
f  e.  ( K  Cn  L )  <->  ( f : X --> U. L  /\  A. x  e.  L  ( `' f " x
)  e.  K ) ) )
174, 9, 16mpbir2and 944 . . 3  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  f  e.  ( J  Cn  L
) )  ->  f  e.  ( K  Cn  L
) )
1817ex 115 . 2  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (
f  e.  ( J  Cn  L )  -> 
f  e.  ( K  Cn  L ) ) )
1918ssrdv 3162 1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3130   U.cuni 3810   `'ccnv 4626   "cima 4630   -->wf 5213   ` cfv 5217  (class class class)co 5875   Topctop 13500  TopOnctopon 13513    Cn ccn 13688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-top 13501  df-topon 13514  df-cn 13691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator