ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss1 GIF version

Theorem cnss1 13811
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 Cn 𝐿) βŠ† (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = βˆͺ 𝐽
2 eqid 2177 . . . . . 6 βˆͺ 𝐿 = βˆͺ 𝐿
31, 2cnf 13789 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝑓:π‘‹βŸΆβˆͺ 𝐿)
43adantl 277 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝑓:π‘‹βŸΆβˆͺ 𝐿)
5 simpllr 534 . . . . . 6 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ 𝐽 βŠ† 𝐾)
6 cnima 13805 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽)
76adantll 476 . . . . . 6 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽)
85, 7sseldd 3158 . . . . 5 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐾)
98ralrimiva 2550 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)
10 simpll 527 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
11 cntop2 13787 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝐿 ∈ Top)
1211adantl 277 . . . . . 6 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐿 ∈ Top)
132toptopon 13603 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
1412, 13sylib 122 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
15 iscn 13782 . . . . 5 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿)) β†’ (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:π‘‹βŸΆβˆͺ 𝐿 ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)))
1610, 14, 15syl2anc 411 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:π‘‹βŸΆβˆͺ 𝐿 ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)))
174, 9, 16mpbir2and 944 . . 3 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 115 . 2 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3163 1 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 Cn 𝐿) βŠ† (𝐾 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3131  βˆͺ cuni 3811  β—‘ccnv 4627   β€œ cima 4631  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877  Topctop 13582  TopOnctopon 13595   Cn ccn 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-cn 13773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator