Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnss1 | GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss1.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnss1 | ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnss1.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2165 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
3 | 1, 2 | cnf 12844 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋⟶∪ 𝐿) |
4 | 3 | adantl 275 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋⟶∪ 𝐿) |
5 | simpllr 524 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐽 ⊆ 𝐾) | |
6 | cnima 12860 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | adantll 468 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 5, 7 | sseldd 3143 | . . . . 5 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐾) |
9 | 8 | ralrimiva 2539 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾) |
10 | simpll 519 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋)) | |
11 | cntop2 12842 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | |
12 | 11 | adantl 275 | . . . . . 6 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top) |
13 | 2 | toptopon 12656 | . . . . . 6 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
14 | 12, 13 | sylib 121 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
15 | iscn 12837 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) | |
16 | 10, 14, 15 | syl2anc 409 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) |
17 | 4, 9, 16 | mpbir2and 934 | . . 3 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿)) |
18 | 17 | ex 114 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿))) |
19 | 18 | ssrdv 3148 | 1 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∪ cuni 3789 ◡ccnv 4603 “ cima 4607 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 Topctop 12635 TopOnctopon 12648 Cn ccn 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12636 df-topon 12649 df-cn 12828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |