ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 Unicode version

Theorem cnss2 14204
Description: If the topology  K is finer than  J, then there are fewer continuous functions into  K than into  J from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnss2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )

Proof of Theorem cnss2
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . . . 6  |-  U. J  =  U. J
2 cnss2.1 . . . . . 6  |-  Y  = 
U. K
31, 2cnf 14181 . . . . 5  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> Y )
43adantl 277 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f : U. J --> Y )
5 simplr 528 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  C_  K )
6 cnima 14197 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
76ralrimiva 2563 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' f " x )  e.  J )
87adantl 277 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  K  ( `' f " x )  e.  J )
9 ssralv 3234 . . . . 5  |-  ( L 
C_  K  ->  ( A. x  e.  K  ( `' f " x
)  e.  J  ->  A. x  e.  L  ( `' f " x
)  e.  J ) )
105, 8, 9sylc 62 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  L  ( `' f " x )  e.  J )
11 cntop1 14178 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  J  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  Top )
131toptopon 13995 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  U. J ) )
15 simpll 527 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  e.  (TopOn `  Y )
)
16 iscn 14174 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  (TopOn `  Y )
)  ->  ( f  e.  ( J  Cn  L
)  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
1714, 15, 16syl2anc 411 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  (
f  e.  ( J  Cn  L )  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
184, 10, 17mpbir2and 946 . . 3  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f  e.  ( J  Cn  L
) )
1918ex 115 . 2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  L ) ) )
2019ssrdv 3176 1  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468    C_ wss 3144   U.cuni 3824   `'ccnv 4643   "cima 4647   -->wf 5231   ` cfv 5235  (class class class)co 5897   Topctop 13974  TopOnctopon 13987    Cn ccn 14162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-top 13975  df-topon 13988  df-cn 14165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator