ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 Unicode version

Theorem cnss2 14395
Description: If the topology  K is finer than  J, then there are fewer continuous functions into  K than into  J from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnss2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )

Proof of Theorem cnss2
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . 6  |-  U. J  =  U. J
2 cnss2.1 . . . . . 6  |-  Y  = 
U. K
31, 2cnf 14372 . . . . 5  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> Y )
43adantl 277 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f : U. J --> Y )
5 simplr 528 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  C_  K )
6 cnima 14388 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
76ralrimiva 2567 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' f " x )  e.  J )
87adantl 277 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  K  ( `' f " x )  e.  J )
9 ssralv 3243 . . . . 5  |-  ( L 
C_  K  ->  ( A. x  e.  K  ( `' f " x
)  e.  J  ->  A. x  e.  L  ( `' f " x
)  e.  J ) )
105, 8, 9sylc 62 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  L  ( `' f " x )  e.  J )
11 cntop1 14369 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  J  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  Top )
131toptopon 14186 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  U. J ) )
15 simpll 527 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  e.  (TopOn `  Y )
)
16 iscn 14365 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  (TopOn `  Y )
)  ->  ( f  e.  ( J  Cn  L
)  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
1714, 15, 16syl2anc 411 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  (
f  e.  ( J  Cn  L )  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
184, 10, 17mpbir2and 946 . . 3  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f  e.  ( J  Cn  L
) )
1918ex 115 . 2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  L ) ) )
2019ssrdv 3185 1  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   U.cuni 3835   `'ccnv 4658   "cima 4662   -->wf 5250   ` cfv 5254  (class class class)co 5918   Topctop 14165  TopOnctopon 14178    Cn ccn 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-top 14166  df-topon 14179  df-cn 14356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator