ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 Unicode version

Theorem cnss2 12867
Description: If the topology  K is finer than  J, then there are fewer continuous functions into  K than into  J from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnss2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )

Proof of Theorem cnss2
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . . . 6  |-  U. J  =  U. J
2 cnss2.1 . . . . . 6  |-  Y  = 
U. K
31, 2cnf 12844 . . . . 5  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> Y )
43adantl 275 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f : U. J --> Y )
5 simplr 520 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  C_  K )
6 cnima 12860 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
76ralrimiva 2539 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' f " x )  e.  J )
87adantl 275 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  K  ( `' f " x )  e.  J )
9 ssralv 3206 . . . . 5  |-  ( L 
C_  K  ->  ( A. x  e.  K  ( `' f " x
)  e.  J  ->  A. x  e.  L  ( `' f " x
)  e.  J ) )
105, 8, 9sylc 62 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  L  ( `' f " x )  e.  J )
11 cntop1 12841 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  J  e.  Top )
1211adantl 275 . . . . . 6  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  Top )
131toptopon 12656 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1412, 13sylib 121 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  U. J ) )
15 simpll 519 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  e.  (TopOn `  Y )
)
16 iscn 12837 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  (TopOn `  Y )
)  ->  ( f  e.  ( J  Cn  L
)  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
1714, 15, 16syl2anc 409 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  (
f  e.  ( J  Cn  L )  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
184, 10, 17mpbir2and 934 . . 3  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f  e.  ( J  Cn  L
) )
1918ex 114 . 2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  L ) ) )
2019ssrdv 3148 1  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   U.cuni 3789   `'ccnv 4603   "cima 4607   -->wf 5184   ` cfv 5188  (class class class)co 5842   Topctop 12635  TopOnctopon 12648    Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12636  df-topon 12649  df-cn 12828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator