ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 Unicode version

Theorem cnss2 13766
Description: If the topology  K is finer than  J, then there are fewer continuous functions into  K than into  J from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnss2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )

Proof of Theorem cnss2
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . . 6  |-  U. J  =  U. J
2 cnss2.1 . . . . . 6  |-  Y  = 
U. K
31, 2cnf 13743 . . . . 5  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> Y )
43adantl 277 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f : U. J --> Y )
5 simplr 528 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  C_  K )
6 cnima 13759 . . . . . . 7  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
76ralrimiva 2550 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' f " x )  e.  J )
87adantl 277 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  K  ( `' f " x )  e.  J )
9 ssralv 3221 . . . . 5  |-  ( L 
C_  K  ->  ( A. x  e.  K  ( `' f " x
)  e.  J  ->  A. x  e.  L  ( `' f " x
)  e.  J ) )
105, 8, 9sylc 62 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  A. x  e.  L  ( `' f " x )  e.  J )
11 cntop1 13740 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  J  e.  Top )
1211adantl 277 . . . . . 6  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  Top )
131toptopon 13557 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1412, 13sylib 122 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  U. J ) )
15 simpll 527 . . . . 5  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  L  e.  (TopOn `  Y )
)
16 iscn 13736 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  (TopOn `  Y )
)  ->  ( f  e.  ( J  Cn  L
)  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
1714, 15, 16syl2anc 411 . . . 4  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  (
f  e.  ( J  Cn  L )  <->  ( f : U. J --> Y  /\  A. x  e.  L  ( `' f " x
)  e.  J ) ) )
184, 10, 17mpbir2and 944 . . 3  |-  ( ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  /\  f  e.  ( J  Cn  K
) )  ->  f  e.  ( J  Cn  L
) )
1918ex 115 . 2  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  L ) ) )
2019ssrdv 3163 1  |-  ( ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   U.cuni 3811   `'ccnv 4627   "cima 4631   -->wf 5214   ` cfv 5218  (class class class)co 5877   Topctop 13536  TopOnctopon 13549    Cn ccn 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13537  df-topon 13550  df-cn 13727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator