ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntop1 Unicode version

Theorem cntop1 14875
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )

Proof of Theorem cntop1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  U. J  =  U. J
2 eqid 2229 . . . 4  |-  U. K  =  U. K
31, 2iscn2 14874 . . 3  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
43simplbi 274 . 2  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
54simpld 112 1  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508   U.cuni 3888   `'ccnv 4718   "cima 4722   -->wf 5314  (class class class)co 6001   Topctop 14671    Cn ccn 14859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862
This theorem is referenced by:  cnco  14895  cnclima  14897  cnntri  14898  cnss2  14901  cncnpi  14902  cncnp2m  14905  cnrest  14909  cnrest2  14910  cnrest2r  14911  lmcn  14925  txcnmpt  14947  uptx  14948  txcn  14949  cnmpt21f  14966  hmeof1o  14983  hmeores  14989  txhmeo  14993
  Copyright terms: Public domain W3C validator