Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 GIF version

Theorem cnss2 12433
 Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1 𝑌 = 𝐾
Assertion
Ref Expression
cnss2 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿))

Proof of Theorem cnss2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . . . 6 𝐽 = 𝐽
2 cnss2.1 . . . . . 6 𝑌 = 𝐾
31, 2cnf 12410 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽𝑌)
43adantl 275 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓: 𝐽𝑌)
5 simplr 520 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿𝐾)
6 cnima 12426 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
76ralrimiva 2508 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽)
87adantl 275 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽)
9 ssralv 3165 . . . . 5 (𝐿𝐾 → (∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽 → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽))
105, 8, 9sylc 62 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)
11 cntop1 12407 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1211adantl 275 . . . . . 6 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
131toptopon 12222 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1412, 13sylib 121 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
15 simpll 519 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌))
16 iscn 12403 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓: 𝐽𝑌 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)))
1714, 15, 16syl2anc 409 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓: 𝐽𝑌 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)))
184, 10, 17mpbir2and 929 . . 3 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿))
1918ex 114 . 2 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿)))
2019ssrdv 3107 1 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417   ⊆ wss 3075  ∪ cuni 3743  ◡ccnv 4545   “ cima 4549  ⟶wf 5126  ‘cfv 5130  (class class class)co 5781  Topctop 12201  TopOnctopon 12214   Cn ccn 12391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-top 12202  df-topon 12215  df-cn 12394 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator