ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 GIF version

Theorem cnss2 13730
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
cnss2 ((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) β†’ (𝐽 Cn 𝐾) βŠ† (𝐽 Cn 𝐿))

Proof of Theorem cnss2
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . . 6 βˆͺ 𝐽 = βˆͺ 𝐽
2 cnss2.1 . . . . . 6 π‘Œ = βˆͺ 𝐾
31, 2cnf 13707 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐾) β†’ 𝑓:βˆͺ π½βŸΆπ‘Œ)
43adantl 277 . . . 4 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝑓:βˆͺ π½βŸΆπ‘Œ)
5 simplr 528 . . . . 5 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝐿 βŠ† 𝐾)
6 cnima 13723 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ π‘₯ ∈ 𝐾) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽)
76ralrimiva 2550 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) β†’ βˆ€π‘₯ ∈ 𝐾 (◑𝑓 β€œ π‘₯) ∈ 𝐽)
87adantl 277 . . . . 5 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ 𝐾 (◑𝑓 β€œ π‘₯) ∈ 𝐽)
9 ssralv 3220 . . . . 5 (𝐿 βŠ† 𝐾 β†’ (βˆ€π‘₯ ∈ 𝐾 (◑𝑓 β€œ π‘₯) ∈ 𝐽 β†’ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐽))
105, 8, 9sylc 62 . . . 4 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐽)
11 cntop1 13704 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ Top)
1211adantl 277 . . . . . 6 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝐽 ∈ Top)
131toptopon 13521 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
1412, 13sylib 122 . . . . 5 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
15 simpll 527 . . . . 5 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝐿 ∈ (TopOnβ€˜π‘Œ))
16 iscn 13700 . . . . 5 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ 𝐿 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:βˆͺ π½βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐽)))
1714, 15, 16syl2anc 411 . . . 4 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:βˆͺ π½βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐽)))
184, 10, 17mpbir2and 944 . . 3 (((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) β†’ 𝑓 ∈ (𝐽 Cn 𝐿))
1918ex 115 . 2 ((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) β†’ (𝑓 ∈ (𝐽 Cn 𝐾) β†’ 𝑓 ∈ (𝐽 Cn 𝐿)))
2019ssrdv 3162 1 ((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) β†’ (𝐽 Cn 𝐾) βŠ† (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3130  βˆͺ cuni 3810  β—‘ccnv 4626   β€œ cima 4630  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  Topctop 13500  TopOnctopon 13513   Cn ccn 13688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-top 13501  df-topon 13514  df-cn 13691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator