ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnss2 GIF version

Theorem cnss2 13307
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss2.1 𝑌 = 𝐾
Assertion
Ref Expression
cnss2 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿))

Proof of Theorem cnss2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2175 . . . . . 6 𝐽 = 𝐽
2 cnss2.1 . . . . . 6 𝑌 = 𝐾
31, 2cnf 13284 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽𝑌)
43adantl 277 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓: 𝐽𝑌)
5 simplr 528 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿𝐾)
6 cnima 13300 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
76ralrimiva 2548 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽)
87adantl 277 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽)
9 ssralv 3217 . . . . 5 (𝐿𝐾 → (∀𝑥𝐾 (𝑓𝑥) ∈ 𝐽 → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽))
105, 8, 9sylc 62 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)
11 cntop1 13281 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1211adantl 277 . . . . . 6 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
131toptopon 13096 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1412, 13sylib 122 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
15 simpll 527 . . . . 5 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌))
16 iscn 13277 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓: 𝐽𝑌 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)))
1714, 15, 16syl2anc 411 . . . 4 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓: 𝐽𝑌 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐽)))
184, 10, 17mpbir2and 944 . . 3 (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿))
1918ex 115 . 2 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿)))
2019ssrdv 3159 1 ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  wss 3127   cuni 3805  ccnv 4619  cima 4623  wf 5204  cfv 5208  (class class class)co 5865  Topctop 13075  TopOnctopon 13088   Cn ccn 13265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-top 13076  df-topon 13089  df-cn 13268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator