| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnss2 | GIF version | ||
| Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnss2.1 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnss2 | ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | cnss2.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | cnf 14440 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶𝑌) |
| 4 | 3 | adantl 277 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓:∪ 𝐽⟶𝑌) |
| 5 | simplr 528 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ⊆ 𝐾) | |
| 6 | cnima 14456 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
| 7 | 6 | ralrimiva 2570 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 9 | ssralv 3247 | . . . . 5 ⊢ (𝐿 ⊆ 𝐾 → (∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽 → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽)) | |
| 10 | 5, 8, 9 | sylc 62 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 11 | cntop1 14437 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 12 | 11 | adantl 277 | . . . . . 6 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
| 13 | 1 | toptopon 14254 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 14 | 12, 13 | sylib 122 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 15 | simpll 527 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌)) | |
| 16 | iscn 14433 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) | |
| 17 | 14, 15, 16 | syl2anc 411 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) |
| 18 | 4, 10, 17 | mpbir2and 946 | . . 3 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿)) |
| 19 | 18 | ex 115 | . 2 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿))) |
| 20 | 19 | ssrdv 3189 | 1 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∪ cuni 3839 ◡ccnv 4662 “ cima 4666 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 Topctop 14233 TopOnctopon 14246 Cn ccn 14421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-top 14234 df-topon 14247 df-cn 14424 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |