![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decaddc | Unicode version |
Description: Add two numerals ![]() ![]() |
Ref | Expression |
---|---|
decma.a |
![]() ![]() ![]() ![]() |
decma.b |
![]() ![]() ![]() ![]() |
decma.c |
![]() ![]() ![]() ![]() |
decma.d |
![]() ![]() ![]() ![]() |
decma.m |
![]() ![]() ![]() ![]() ![]() |
decma.n |
![]() ![]() ![]() ![]() ![]() |
decaddc.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
decaddc.f |
![]() ![]() ![]() ![]() |
decaddc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decaddc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 9415 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | decma.a |
. . 3
![]() ![]() ![]() ![]() | |
3 | decma.b |
. . 3
![]() ![]() ![]() ![]() | |
4 | decma.c |
. . 3
![]() ![]() ![]() ![]() | |
5 | decma.d |
. . 3
![]() ![]() ![]() ![]() | |
6 | decma.m |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
7 | dfdec10 9401 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eqtri 2208 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | decma.n |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
10 | dfdec10 9401 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eqtri 2208 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | decaddc.f |
. . 3
![]() ![]() ![]() ![]() | |
13 | decaddc.e |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | decaddc.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | dfdec10 9401 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | eqtri 2208 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 16 | numaddc 9445 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | dfdec10 9401 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 17, 18 | eqtr4i 2211 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8144 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-dec 9399 |
This theorem is referenced by: decaddc2 9453 decaddci 9458 |
Copyright terms: Public domain | W3C validator |