| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decaddc | Unicode version | ||
| Description: Add two numerals |
| Ref | Expression |
|---|---|
| decma.a |
|
| decma.b |
|
| decma.c |
|
| decma.d |
|
| decma.m |
|
| decma.n |
|
| decaddc.e |
|
| decaddc.f |
|
| decaddc.2 |
|
| Ref | Expression |
|---|---|
| decaddc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9503 |
. . 3
| |
| 2 | decma.a |
. . 3
| |
| 3 | decma.b |
. . 3
| |
| 4 | decma.c |
. . 3
| |
| 5 | decma.d |
. . 3
| |
| 6 | decma.m |
. . . 4
| |
| 7 | dfdec10 9489 |
. . . 4
| |
| 8 | 6, 7 | eqtri 2225 |
. . 3
|
| 9 | decma.n |
. . . 4
| |
| 10 | dfdec10 9489 |
. . . 4
| |
| 11 | 9, 10 | eqtri 2225 |
. . 3
|
| 12 | decaddc.f |
. . 3
| |
| 13 | decaddc.e |
. . 3
| |
| 14 | decaddc.2 |
. . . 4
| |
| 15 | dfdec10 9489 |
. . . 4
| |
| 16 | 14, 15 | eqtri 2225 |
. . 3
|
| 17 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 16 | numaddc 9533 |
. 2
|
| 18 | dfdec10 9489 |
. 2
| |
| 19 | 17, 18 | eqtr4i 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-sub 8227 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-dec 9487 |
| This theorem is referenced by: decaddc2 9541 decaddci 9546 2exp16 12679 |
| Copyright terms: Public domain | W3C validator |