ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decadd Unicode version

Theorem decadd 9527
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a  |-  A  e. 
NN0
decma.b  |-  B  e. 
NN0
decma.c  |-  C  e. 
NN0
decma.d  |-  D  e. 
NN0
decma.m  |-  M  = ; A B
decma.n  |-  N  = ; C D
decadd.e  |-  ( A  +  C )  =  E
decadd.f  |-  ( B  +  D )  =  F
Assertion
Ref Expression
decadd  |-  ( M  +  N )  = ; E F

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 9491 . . 3  |- ; 1 0  e.  NN0
2 decma.a . . 3  |-  A  e. 
NN0
3 decma.b . . 3  |-  B  e. 
NN0
4 decma.c . . 3  |-  C  e. 
NN0
5 decma.d . . 3  |-  D  e. 
NN0
6 decma.m . . . 4  |-  M  = ; A B
7 dfdec10 9477 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
86, 7eqtri 2217 . . 3  |-  M  =  ( (; 1 0  x.  A
)  +  B )
9 decma.n . . . 4  |-  N  = ; C D
10 dfdec10 9477 . . . 4  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
119, 10eqtri 2217 . . 3  |-  N  =  ( (; 1 0  x.  C
)  +  D )
12 decadd.e . . 3  |-  ( A  +  C )  =  E
13 decadd.f . . 3  |-  ( B  +  D )  =  F
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 9520 . 2  |-  ( M  +  N )  =  ( (; 1 0  x.  E
)  +  F )
15 dfdec10 9477 . 2  |- ; E F  =  ( (; 1 0  x.  E
)  +  F )
1614, 15eqtr4i 2220 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266  ;cdc 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-dec 9475
This theorem is referenced by:  decaddm10  9532  decaddi  9533  10p10e20  9568  dec5dvds2  12607  2exp16  12631  1kp2ke3k  15454
  Copyright terms: Public domain W3C validator