ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decadd Unicode version

Theorem decadd 9556
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a  |-  A  e. 
NN0
decma.b  |-  B  e. 
NN0
decma.c  |-  C  e. 
NN0
decma.d  |-  D  e. 
NN0
decma.m  |-  M  = ; A B
decma.n  |-  N  = ; C D
decadd.e  |-  ( A  +  C )  =  E
decadd.f  |-  ( B  +  D )  =  F
Assertion
Ref Expression
decadd  |-  ( M  +  N )  = ; E F

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 9520 . . 3  |- ; 1 0  e.  NN0
2 decma.a . . 3  |-  A  e. 
NN0
3 decma.b . . 3  |-  B  e. 
NN0
4 decma.c . . 3  |-  C  e. 
NN0
5 decma.d . . 3  |-  D  e. 
NN0
6 decma.m . . . 4  |-  M  = ; A B
7 dfdec10 9506 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
86, 7eqtri 2225 . . 3  |-  M  =  ( (; 1 0  x.  A
)  +  B )
9 decma.n . . . 4  |-  N  = ; C D
10 dfdec10 9506 . . . 4  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
119, 10eqtri 2225 . . 3  |-  N  =  ( (; 1 0  x.  C
)  +  D )
12 decadd.e . . 3  |-  ( A  +  C )  =  E
13 decadd.f . . 3  |-  ( B  +  D )  =  F
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 9549 . 2  |-  ( M  +  N )  =  ( (; 1 0  x.  E
)  +  F )
15 dfdec10 9506 . 2  |- ; E F  =  ( (; 1 0  x.  E
)  +  F )
1614, 15eqtr4i 2228 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175  (class class class)co 5943   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929   NN0cn0 9294  ;cdc 9503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-dec 9504
This theorem is referenced by:  decaddm10  9561  decaddi  9562  10p10e20  9597  dec5dvds2  12678  2exp16  12702  1kp2ke3k  15593
  Copyright terms: Public domain W3C validator