ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decma2c Unicode version

Theorem decma2c 9576
Description: Perform a multiply-add of two numerals  M and  N against a fixed multiplier  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a  |-  A  e. 
NN0
decma.b  |-  B  e. 
NN0
decma.c  |-  C  e. 
NN0
decma.d  |-  D  e. 
NN0
decma.m  |-  M  = ; A B
decma.n  |-  N  = ; C D
decma2c.p  |-  P  e. 
NN0
decma2c.f  |-  F  e. 
NN0
decma2c.g  |-  G  e. 
NN0
decma2c.e  |-  ( ( P  x.  A )  +  ( C  +  G ) )  =  E
decma2c.2  |-  ( ( P  x.  B )  +  D )  = ; G F
Assertion
Ref Expression
decma2c  |-  ( ( P  x.  M )  +  N )  = ; E F

Proof of Theorem decma2c
StepHypRef Expression
1 10nn0 9541 . . 3  |- ; 1 0  e.  NN0
2 decma.a . . 3  |-  A  e. 
NN0
3 decma.b . . 3  |-  B  e. 
NN0
4 decma.c . . 3  |-  C  e. 
NN0
5 decma.d . . 3  |-  D  e. 
NN0
6 decma.m . . . 4  |-  M  = ; A B
7 dfdec10 9527 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
86, 7eqtri 2227 . . 3  |-  M  =  ( (; 1 0  x.  A
)  +  B )
9 decma.n . . . 4  |-  N  = ; C D
10 dfdec10 9527 . . . 4  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
119, 10eqtri 2227 . . 3  |-  N  =  ( (; 1 0  x.  C
)  +  D )
12 decma2c.p . . 3  |-  P  e. 
NN0
13 decma2c.f . . 3  |-  F  e. 
NN0
14 decma2c.g . . 3  |-  G  e. 
NN0
15 decma2c.e . . 3  |-  ( ( P  x.  A )  +  ( C  +  G ) )  =  E
16 decma2c.2 . . . 4  |-  ( ( P  x.  B )  +  D )  = ; G F
17 dfdec10 9527 . . . 4  |- ; G F  =  ( (; 1 0  x.  G
)  +  F )
1816, 17eqtri 2227 . . 3  |-  ( ( P  x.  B )  +  D )  =  ( (; 1 0  x.  G
)  +  F )
191, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18numma2c 9569 . 2  |-  ( ( P  x.  M )  +  N )  =  ( (; 1 0  x.  E
)  +  F )
20 dfdec10 9527 . 2  |- ; E F  =  ( (; 1 0  x.  E
)  +  F )
2119, 20eqtr4i 2230 1  |-  ( ( P  x.  M )  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177  (class class class)co 5957   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950   NN0cn0 9315  ;cdc 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-sub 8265  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-dec 9525
This theorem is referenced by:  2exp16  12835
  Copyright terms: Public domain W3C validator