ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decma2c GIF version

Theorem decma2c 9138
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decma2c.p 𝑃 ∈ ℕ0
decma2c.f 𝐹 ∈ ℕ0
decma2c.g 𝐺 ∈ ℕ0
decma2c.e ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
decma2c.2 ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹
Assertion
Ref Expression
decma2c ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹

Proof of Theorem decma2c
StepHypRef Expression
1 10nn0 9103 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 9089 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2135 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 9089 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2135 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decma2c.p . . 3 𝑃 ∈ ℕ0
13 decma2c.f . . 3 𝐹 ∈ ℕ0
14 decma2c.g . . 3 𝐺 ∈ ℕ0
15 decma2c.e . . 3 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
16 decma2c.2 . . . 4 ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹
17 dfdec10 9089 . . . 4 𝐺𝐹 = ((10 · 𝐺) + 𝐹)
1816, 17eqtri 2135 . . 3 ((𝑃 · 𝐵) + 𝐷) = ((10 · 𝐺) + 𝐹)
191, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18numma2c 9131 . 2 ((𝑃 · 𝑀) + 𝑁) = ((10 · 𝐸) + 𝐹)
20 dfdec10 9089 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
2119, 20eqtr4i 2138 1 ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1314  wcel 1463  (class class class)co 5728  0cc0 7547  1c1 7548   + caddc 7550   · cmul 7552  0cn0 8881  cdc 9086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-sub 7858  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-7 8694  df-8 8695  df-9 8696  df-n0 8882  df-dec 9087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator