ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemeu GIF version

Theorem dedekindicclemeu 14785
Description: Lemma for dedekindicc 14787. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
dedekindicclemeu.are (𝜑𝐶 ∈ (𝐴[,]𝐵))
dedekindicclemeu.ac (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))
dedekindicclemeu.bre (𝜑𝐷 ∈ (𝐴[,]𝐵))
dedekindicclemeu.bc (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))
dedekindicclemeu.lt (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
dedekindicclemeu (𝜑 → ⊥)
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟   𝐶,𝑞,𝑟   𝐷,𝑟   𝐿,𝑞,𝑟   𝑈,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑞)   𝐷(𝑞)

Proof of Theorem dedekindicclemeu
StepHypRef Expression
1 breq1 4032 . . . 4 (𝑞 = 𝐶 → (𝑞 < 𝐶𝐶 < 𝐶))
2 dedekindicclemeu.ac . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))
32simpld 112 . . . . 5 (𝜑 → ∀𝑞𝐿 𝑞 < 𝐶)
43adantr 276 . . . 4 ((𝜑𝐶𝐿) → ∀𝑞𝐿 𝑞 < 𝐶)
5 simpr 110 . . . 4 ((𝜑𝐶𝐿) → 𝐶𝐿)
61, 4, 5rspcdva 2869 . . 3 ((𝜑𝐶𝐿) → 𝐶 < 𝐶)
7 dedekindicc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 dedekindicc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 iccssre 10021 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
107, 8, 9syl2anc 411 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 dedekindicclemeu.are . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
1210, 11sseldd 3180 . . . . 5 (𝜑𝐶 ∈ ℝ)
1312ltnrd 8131 . . . 4 (𝜑 → ¬ 𝐶 < 𝐶)
1413adantr 276 . . 3 ((𝜑𝐶𝐿) → ¬ 𝐶 < 𝐶)
156, 14pm2.21fal 1384 . 2 ((𝜑𝐶𝐿) → ⊥)
16 breq2 4033 . . . 4 (𝑟 = 𝐷 → (𝐷 < 𝑟𝐷 < 𝐷))
17 dedekindicclemeu.bc . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))
1817simprd 114 . . . . 5 (𝜑 → ∀𝑟𝑈 𝐷 < 𝑟)
1918adantr 276 . . . 4 ((𝜑𝐷𝑈) → ∀𝑟𝑈 𝐷 < 𝑟)
20 simpr 110 . . . 4 ((𝜑𝐷𝑈) → 𝐷𝑈)
2116, 19, 20rspcdva 2869 . . 3 ((𝜑𝐷𝑈) → 𝐷 < 𝐷)
22 dedekindicclemeu.bre . . . . . 6 (𝜑𝐷 ∈ (𝐴[,]𝐵))
2310, 22sseldd 3180 . . . . 5 (𝜑𝐷 ∈ ℝ)
2423ltnrd 8131 . . . 4 (𝜑 → ¬ 𝐷 < 𝐷)
2524adantr 276 . . 3 ((𝜑𝐷𝑈) → ¬ 𝐷 < 𝐷)
2621, 25pm2.21fal 1384 . 2 ((𝜑𝐷𝑈) → ⊥)
27 dedekindicclemeu.lt . . 3 (𝜑𝐶 < 𝐷)
28 breq2 4033 . . . . 5 (𝑟 = 𝐷 → (𝐶 < 𝑟𝐶 < 𝐷))
29 eleq1 2256 . . . . . 6 (𝑟 = 𝐷 → (𝑟𝑈𝐷𝑈))
3029orbi2d 791 . . . . 5 (𝑟 = 𝐷 → ((𝐶𝐿𝑟𝑈) ↔ (𝐶𝐿𝐷𝑈)))
3128, 30imbi12d 234 . . . 4 (𝑟 = 𝐷 → ((𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈)) ↔ (𝐶 < 𝐷 → (𝐶𝐿𝐷𝑈))))
32 breq1 4032 . . . . . . 7 (𝑞 = 𝐶 → (𝑞 < 𝑟𝐶 < 𝑟))
33 eleq1 2256 . . . . . . . 8 (𝑞 = 𝐶 → (𝑞𝐿𝐶𝐿))
3433orbi1d 792 . . . . . . 7 (𝑞 = 𝐶 → ((𝑞𝐿𝑟𝑈) ↔ (𝐶𝐿𝑟𝑈)))
3532, 34imbi12d 234 . . . . . 6 (𝑞 = 𝐶 → ((𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈))))
3635ralbidv 2494 . . . . 5 (𝑞 = 𝐶 → (∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈))))
37 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
3836, 37, 11rspcdva 2869 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈)))
3931, 38, 22rspcdva 2869 . . 3 (𝜑 → (𝐶 < 𝐷 → (𝐶𝐿𝐷𝑈)))
4027, 39mpd 13 . 2 (𝜑 → (𝐶𝐿𝐷𝑈))
4115, 26, 40mpjaodan 799 1 (𝜑 → ⊥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wcel 2164  wral 2472  wrex 2473  cin 3152  wss 3153  c0 3446   class class class wbr 4029  (class class class)co 5918  cr 7871   < clt 8054  [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by:  dedekindicclemicc  14786
  Copyright terms: Public domain W3C validator