ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemeu GIF version

Theorem dedekindicclemeu 15136
Description: Lemma for dedekindicc 15138. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
dedekindicclemeu.are (𝜑𝐶 ∈ (𝐴[,]𝐵))
dedekindicclemeu.ac (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))
dedekindicclemeu.bre (𝜑𝐷 ∈ (𝐴[,]𝐵))
dedekindicclemeu.bc (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))
dedekindicclemeu.lt (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
dedekindicclemeu (𝜑 → ⊥)
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟   𝐶,𝑞,𝑟   𝐷,𝑟   𝐿,𝑞,𝑟   𝑈,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑞)   𝐷(𝑞)

Proof of Theorem dedekindicclemeu
StepHypRef Expression
1 breq1 4048 . . . 4 (𝑞 = 𝐶 → (𝑞 < 𝐶𝐶 < 𝐶))
2 dedekindicclemeu.ac . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))
32simpld 112 . . . . 5 (𝜑 → ∀𝑞𝐿 𝑞 < 𝐶)
43adantr 276 . . . 4 ((𝜑𝐶𝐿) → ∀𝑞𝐿 𝑞 < 𝐶)
5 simpr 110 . . . 4 ((𝜑𝐶𝐿) → 𝐶𝐿)
61, 4, 5rspcdva 2882 . . 3 ((𝜑𝐶𝐿) → 𝐶 < 𝐶)
7 dedekindicc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 dedekindicc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 iccssre 10079 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
107, 8, 9syl2anc 411 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 dedekindicclemeu.are . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
1210, 11sseldd 3194 . . . . 5 (𝜑𝐶 ∈ ℝ)
1312ltnrd 8186 . . . 4 (𝜑 → ¬ 𝐶 < 𝐶)
1413adantr 276 . . 3 ((𝜑𝐶𝐿) → ¬ 𝐶 < 𝐶)
156, 14pm2.21fal 1393 . 2 ((𝜑𝐶𝐿) → ⊥)
16 breq2 4049 . . . 4 (𝑟 = 𝐷 → (𝐷 < 𝑟𝐷 < 𝐷))
17 dedekindicclemeu.bc . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))
1817simprd 114 . . . . 5 (𝜑 → ∀𝑟𝑈 𝐷 < 𝑟)
1918adantr 276 . . . 4 ((𝜑𝐷𝑈) → ∀𝑟𝑈 𝐷 < 𝑟)
20 simpr 110 . . . 4 ((𝜑𝐷𝑈) → 𝐷𝑈)
2116, 19, 20rspcdva 2882 . . 3 ((𝜑𝐷𝑈) → 𝐷 < 𝐷)
22 dedekindicclemeu.bre . . . . . 6 (𝜑𝐷 ∈ (𝐴[,]𝐵))
2310, 22sseldd 3194 . . . . 5 (𝜑𝐷 ∈ ℝ)
2423ltnrd 8186 . . . 4 (𝜑 → ¬ 𝐷 < 𝐷)
2524adantr 276 . . 3 ((𝜑𝐷𝑈) → ¬ 𝐷 < 𝐷)
2621, 25pm2.21fal 1393 . 2 ((𝜑𝐷𝑈) → ⊥)
27 dedekindicclemeu.lt . . 3 (𝜑𝐶 < 𝐷)
28 breq2 4049 . . . . 5 (𝑟 = 𝐷 → (𝐶 < 𝑟𝐶 < 𝐷))
29 eleq1 2268 . . . . . 6 (𝑟 = 𝐷 → (𝑟𝑈𝐷𝑈))
3029orbi2d 792 . . . . 5 (𝑟 = 𝐷 → ((𝐶𝐿𝑟𝑈) ↔ (𝐶𝐿𝐷𝑈)))
3128, 30imbi12d 234 . . . 4 (𝑟 = 𝐷 → ((𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈)) ↔ (𝐶 < 𝐷 → (𝐶𝐿𝐷𝑈))))
32 breq1 4048 . . . . . . 7 (𝑞 = 𝐶 → (𝑞 < 𝑟𝐶 < 𝑟))
33 eleq1 2268 . . . . . . . 8 (𝑞 = 𝐶 → (𝑞𝐿𝐶𝐿))
3433orbi1d 793 . . . . . . 7 (𝑞 = 𝐶 → ((𝑞𝐿𝑟𝑈) ↔ (𝐶𝐿𝑟𝑈)))
3532, 34imbi12d 234 . . . . . 6 (𝑞 = 𝐶 → ((𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈))))
3635ralbidv 2506 . . . . 5 (𝑞 = 𝐶 → (∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈))))
37 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
3836, 37, 11rspcdva 2882 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶𝐿𝑟𝑈)))
3931, 38, 22rspcdva 2882 . . 3 (𝜑 → (𝐶 < 𝐷 → (𝐶𝐿𝐷𝑈)))
4027, 39mpd 13 . 2 (𝜑 → (𝐶𝐿𝐷𝑈))
4115, 26, 40mpjaodan 800 1 (𝜑 → ⊥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wfal 1378  wcel 2176  wral 2484  wrex 2485  cin 3165  wss 3166  c0 3460   class class class wbr 4045  (class class class)co 5946  cr 7926   < clt 8109  [,]cicc 10015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-icc 10019
This theorem is referenced by:  dedekindicclemicc  15137
  Copyright terms: Public domain W3C validator