![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dedekindicclemeu | GIF version |
Description: Lemma for dedekindicc 14588. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindicc.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
dedekindicclemeu.are | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
dedekindicclemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) |
dedekindicclemeu.bre | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
dedekindicclemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) |
dedekindicclemeu.lt | ⊢ (𝜑 → 𝐶 < 𝐷) |
Ref | Expression |
---|---|
dedekindicclemeu | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4021 | . . . 4 ⊢ (𝑞 = 𝐶 → (𝑞 < 𝐶 ↔ 𝐶 < 𝐶)) | |
2 | dedekindicclemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) | |
3 | 2 | simpld 112 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐶) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐶) |
5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → 𝐶 ∈ 𝐿) | |
6 | 1, 4, 5 | rspcdva 2861 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → 𝐶 < 𝐶) |
7 | dedekindicc.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | dedekindicc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | iccssre 9987 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
10 | 7, 8, 9 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
11 | dedekindicclemeu.are | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
12 | 10, 11 | sseldd 3171 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 12 | ltnrd 8100 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 < 𝐶) |
14 | 13 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ¬ 𝐶 < 𝐶) |
15 | 6, 14 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ⊥) |
16 | breq2 4022 | . . . 4 ⊢ (𝑟 = 𝐷 → (𝐷 < 𝑟 ↔ 𝐷 < 𝐷)) | |
17 | dedekindicclemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) | |
18 | 17 | simprd 114 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐷 < 𝑟) |
19 | 18 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐷 < 𝑟) |
20 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → 𝐷 ∈ 𝑈) | |
21 | 16, 19, 20 | rspcdva 2861 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → 𝐷 < 𝐷) |
22 | dedekindicclemeu.bre | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
23 | 10, 22 | sseldd 3171 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
24 | 23 | ltnrd 8100 | . . . 4 ⊢ (𝜑 → ¬ 𝐷 < 𝐷) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ¬ 𝐷 < 𝐷) |
26 | 21, 25 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ⊥) |
27 | dedekindicclemeu.lt | . . 3 ⊢ (𝜑 → 𝐶 < 𝐷) | |
28 | breq2 4022 | . . . . 5 ⊢ (𝑟 = 𝐷 → (𝐶 < 𝑟 ↔ 𝐶 < 𝐷)) | |
29 | eleq1 2252 | . . . . . 6 ⊢ (𝑟 = 𝐷 → (𝑟 ∈ 𝑈 ↔ 𝐷 ∈ 𝑈)) | |
30 | 29 | orbi2d 791 | . . . . 5 ⊢ (𝑟 = 𝐷 → ((𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈))) |
31 | 28, 30 | imbi12d 234 | . . . 4 ⊢ (𝑟 = 𝐷 → ((𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐶 < 𝐷 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈)))) |
32 | breq1 4021 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 < 𝑟 ↔ 𝐶 < 𝑟)) | |
33 | eleq1 2252 | . . . . . . . 8 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
34 | 33 | orbi1d 792 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
35 | 32, 34 | imbi12d 234 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
36 | 35 | ralbidv 2490 | . . . . 5 ⊢ (𝑞 = 𝐶 → (∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
37 | dedekindicc.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
38 | 36, 37, 11 | rspcdva 2861 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
39 | 31, 38, 22 | rspcdva 2861 | . . 3 ⊢ (𝜑 → (𝐶 < 𝐷 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈))) |
40 | 27, 39 | mpd 13 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈)) |
41 | 15, 26, 40 | mpjaodan 799 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ⊥wfal 1369 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∩ cin 3143 ⊆ wss 3144 ∅c0 3437 class class class wbr 4018 (class class class)co 5897 ℝcr 7841 < clt 8023 [,]cicc 9923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-icc 9927 |
This theorem is referenced by: dedekindicclemicc 14587 |
Copyright terms: Public domain | W3C validator |