Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemeu | GIF version |
Description: Lemma for dedekindicc 13405. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindicc.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
dedekindicclemeu.are | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
dedekindicclemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) |
dedekindicclemeu.bre | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
dedekindicclemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) |
dedekindicclemeu.lt | ⊢ (𝜑 → 𝐶 < 𝐷) |
Ref | Expression |
---|---|
dedekindicclemeu | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3992 | . . . 4 ⊢ (𝑞 = 𝐶 → (𝑞 < 𝐶 ↔ 𝐶 < 𝐶)) | |
2 | dedekindicclemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) | |
3 | 2 | simpld 111 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐶) |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐶) |
5 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → 𝐶 ∈ 𝐿) | |
6 | 1, 4, 5 | rspcdva 2839 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → 𝐶 < 𝐶) |
7 | dedekindicc.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | dedekindicc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | iccssre 9912 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
11 | dedekindicclemeu.are | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
12 | 10, 11 | sseldd 3148 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 12 | ltnrd 8031 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 < 𝐶) |
14 | 13 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ¬ 𝐶 < 𝐶) |
15 | 6, 14 | pm2.21fal 1368 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐿) → ⊥) |
16 | breq2 3993 | . . . 4 ⊢ (𝑟 = 𝐷 → (𝐷 < 𝑟 ↔ 𝐷 < 𝐷)) | |
17 | dedekindicclemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) | |
18 | 17 | simprd 113 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐷 < 𝑟) |
19 | 18 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐷 < 𝑟) |
20 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → 𝐷 ∈ 𝑈) | |
21 | 16, 19, 20 | rspcdva 2839 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → 𝐷 < 𝐷) |
22 | dedekindicclemeu.bre | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
23 | 10, 22 | sseldd 3148 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
24 | 23 | ltnrd 8031 | . . . 4 ⊢ (𝜑 → ¬ 𝐷 < 𝐷) |
25 | 24 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ¬ 𝐷 < 𝐷) |
26 | 21, 25 | pm2.21fal 1368 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑈) → ⊥) |
27 | dedekindicclemeu.lt | . . 3 ⊢ (𝜑 → 𝐶 < 𝐷) | |
28 | breq2 3993 | . . . . 5 ⊢ (𝑟 = 𝐷 → (𝐶 < 𝑟 ↔ 𝐶 < 𝐷)) | |
29 | eleq1 2233 | . . . . . 6 ⊢ (𝑟 = 𝐷 → (𝑟 ∈ 𝑈 ↔ 𝐷 ∈ 𝑈)) | |
30 | 29 | orbi2d 785 | . . . . 5 ⊢ (𝑟 = 𝐷 → ((𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈))) |
31 | 28, 30 | imbi12d 233 | . . . 4 ⊢ (𝑟 = 𝐷 → ((𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐶 < 𝐷 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈)))) |
32 | breq1 3992 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 < 𝑟 ↔ 𝐶 < 𝑟)) | |
33 | eleq1 2233 | . . . . . . . 8 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
34 | 33 | orbi1d 786 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
35 | 32, 34 | imbi12d 233 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
36 | 35 | ralbidv 2470 | . . . . 5 ⊢ (𝑞 = 𝐶 → (∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
37 | dedekindicc.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
38 | 36, 37, 11 | rspcdva 2839 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝐶 < 𝑟 → (𝐶 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
39 | 31, 38, 22 | rspcdva 2839 | . . 3 ⊢ (𝜑 → (𝐶 < 𝐷 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈))) |
40 | 27, 39 | mpd 13 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐿 ∨ 𝐷 ∈ 𝑈)) |
41 | 15, 26, 40 | mpjaodan 793 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ⊥wfal 1353 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 < clt 7954 [,]cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: dedekindicclemicc 13404 |
Copyright terms: Public domain | W3C validator |