ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodlteqALT Unicode version

Theorem addmodlteqALT 11751
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10297 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addmodlteqALT  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  I  =  J
) )

Proof of Theorem addmodlteqALT
StepHypRef Expression
1 elfzo0 10081 . . . . 5  |-  ( I  e.  ( 0..^ N )  <->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
2 elfzoelz 10046 . . . . . . . 8  |-  ( J  e.  ( 0..^ N )  ->  J  e.  ZZ )
3 simplrr 526 . . . . . . . . . 10  |-  ( ( ( J  e.  ZZ  /\  ( I  e.  NN0  /\  N  e.  NN ) )  /\  S  e.  ZZ )  ->  N  e.  NN )
4 nn0z 9187 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  ZZ )
54ad2antrl 482 . . . . . . . . . . 11  |-  ( ( J  e.  ZZ  /\  ( I  e.  NN0  /\  N  e.  NN ) )  ->  I  e.  ZZ )
6 zaddcl 9207 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  S  e.  ZZ )  ->  ( I  +  S
)  e.  ZZ )
75, 6sylan 281 . . . . . . . . . 10  |-  ( ( ( J  e.  ZZ  /\  ( I  e.  NN0  /\  N  e.  NN ) )  /\  S  e.  ZZ )  ->  (
I  +  S )  e.  ZZ )
8 zaddcl 9207 . . . . . . . . . . 11  |-  ( ( J  e.  ZZ  /\  S  e.  ZZ )  ->  ( J  +  S
)  e.  ZZ )
98adantlr 469 . . . . . . . . . 10  |-  ( ( ( J  e.  ZZ  /\  ( I  e.  NN0  /\  N  e.  NN ) )  /\  S  e.  ZZ )  ->  ( J  +  S )  e.  ZZ )
103, 7, 93jca 1162 . . . . . . . . 9  |-  ( ( ( J  e.  ZZ  /\  ( I  e.  NN0  /\  N  e.  NN ) )  /\  S  e.  ZZ )  ->  ( N  e.  NN  /\  (
I  +  S )  e.  ZZ  /\  ( J  +  S )  e.  ZZ ) )
1110exp31 362 . . . . . . . 8  |-  ( J  e.  ZZ  ->  (
( I  e.  NN0  /\  N  e.  NN )  ->  ( S  e.  ZZ  ->  ( N  e.  NN  /\  ( I  +  S )  e.  ZZ  /\  ( J  +  S )  e.  ZZ ) ) ) )
122, 11syl 14 . . . . . . 7  |-  ( J  e.  ( 0..^ N )  ->  ( (
I  e.  NN0  /\  N  e.  NN )  ->  ( S  e.  ZZ  ->  ( N  e.  NN  /\  ( I  +  S
)  e.  ZZ  /\  ( J  +  S
)  e.  ZZ ) ) ) )
1312com12 30 . . . . . 6  |-  ( ( I  e.  NN0  /\  N  e.  NN )  ->  ( J  e.  ( 0..^ N )  -> 
( S  e.  ZZ  ->  ( N  e.  NN  /\  ( I  +  S
)  e.  ZZ  /\  ( J  +  S
)  e.  ZZ ) ) ) )
14133adant3 1002 . . . . 5  |-  ( ( I  e.  NN0  /\  N  e.  NN  /\  I  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( S  e.  ZZ  ->  ( N  e.  NN  /\  ( I  +  S
)  e.  ZZ  /\  ( J  +  S
)  e.  ZZ ) ) ) )
151, 14sylbi 120 . . . 4  |-  ( I  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( S  e.  ZZ  ->  ( N  e.  NN  /\  ( I  +  S )  e.  ZZ  /\  ( J  +  S )  e.  ZZ ) ) ) )
16153imp 1176 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( N  e.  NN  /\  ( I  +  S )  e.  ZZ  /\  ( J  +  S )  e.  ZZ ) )
17 moddvds 11695 . . 3  |-  ( ( N  e.  NN  /\  ( I  +  S
)  e.  ZZ  /\  ( J  +  S
)  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  N  ||  ( ( I  +  S )  -  ( J  +  S ) ) ) )
1816, 17syl 14 . 2  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  N  ||  ( ( I  +  S )  -  ( J  +  S ) ) ) )
19 elfzoel2 10045 . . . . 5  |-  ( I  e.  ( 0..^ N )  ->  N  e.  ZZ )
20 zcn 9172 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2120subid1d 8175 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
2221eqcomd 2163 . . . . 5  |-  ( N  e.  ZZ  ->  N  =  ( N  - 
0 ) )
2319, 22syl 14 . . . 4  |-  ( I  e.  ( 0..^ N )  ->  N  =  ( N  -  0
) )
24233ad2ant1 1003 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  =  ( N  -  0 ) )
25 elfzoelz 10046 . . . . 5  |-  ( I  e.  ( 0..^ N )  ->  I  e.  ZZ )
2625zcnd 9287 . . . 4  |-  ( I  e.  ( 0..^ N )  ->  I  e.  CC )
272zcnd 9287 . . . 4  |-  ( J  e.  ( 0..^ N )  ->  J  e.  CC )
28 zcn 9172 . . . 4  |-  ( S  e.  ZZ  ->  S  e.  CC )
29 pnpcan2 8115 . . . 4  |-  ( ( I  e.  CC  /\  J  e.  CC  /\  S  e.  CC )  ->  (
( I  +  S
)  -  ( J  +  S ) )  =  ( I  -  J ) )
3026, 27, 28, 29syl3an 1262 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( I  +  S )  -  ( J  +  S
) )  =  ( I  -  J ) )
3124, 30breq12d 3978 . 2  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( N  ||  ( ( I  +  S )  -  ( J  +  S )
)  <->  ( N  - 
0 )  ||  (
I  -  J ) ) )
32 fzocongeq 11750 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( ( N  -  0 ) 
||  ( I  -  J )  <->  I  =  J ) )
33323adant3 1002 . 2  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( N  -  0 )  ||  ( I  -  J
)  <->  I  =  J
) )
3418, 31, 333bitrd 213 1  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  I  =  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5824   CCcc 7730   0cc0 7732    + caddc 7735    < clt 7912    - cmin 8046   NNcn 8833   NN0cn0 9090   ZZcz 9167  ..^cfzo 10041    mod cmo 10221    || cdvds 11683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-fl 10169  df-mod 10222  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-dvds 11684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator