ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0xaddcl Unicode version

Theorem ge0xaddcl 9759
Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ge0xaddcl  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo ) )  ->  ( A +e B )  e.  ( 0 [,] +oo ) )

Proof of Theorem ge0xaddcl
StepHypRef Expression
1 elxrge0 9754 . 2  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )
2 elxrge0 9754 . 2  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e. 
RR*  /\  0  <_  B ) )
3 xaddcl 9636 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
43ad2ant2r 500 . . 3  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  ( A +e B )  e.  RR* )
5 xaddge0 9654 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( 0  <_  A  /\  0  <_  B ) )  ->  0  <_  ( A +e B ) )
65an4s 577 . . 3  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  0  <_  ( A +e B ) )
7 elxrge0 9754 . . 3  |-  ( ( A +e B )  e.  ( 0 [,] +oo )  <->  ( ( A +e B )  e.  RR*  /\  0  <_  ( A +e
B ) ) )
84, 6, 7sylanbrc 413 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  ( A +e B )  e.  ( 0 [,] +oo ) )
91, 2, 8syl2anb 289 1  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo ) )  ->  ( A +e B )  e.  ( 0 [,] +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   0cc0 7613   +oocpnf 7790   RR*cxr 7792    <_ cle 7794   +ecxad 9550   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-xadd 9553  df-icc 9671
This theorem is referenced by:  comet  12657  bdxmet  12659
  Copyright terms: Public domain W3C validator