ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirq Unicode version

Theorem recidpirq 7587
Description: A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
recidpirq  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
Distinct variable group:    N, l, u

Proof of Theorem recidpirq
StepHypRef Expression
1 nnprlu 7303 . . . 4  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2 prsrcl 7520 . . . 4  |-  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
4 recnnpr 7298 . . . 4  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
5 prsrcl 7520 . . . 4  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
64, 5syl 14 . . 3  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7 mulresr 7567 . . 3  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R.  /\  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
83, 6, 7syl2anc 406 . 2  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
9 1pr 7304 . . . . . . . 8  |-  1P  e.  P.
109a1i 9 . . . . . . 7  |-  ( N  e.  N.  ->  1P  e.  P. )
11 addclpr 7287 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
121, 10, 11syl2anc 406 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
13 addclpr 7287 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )
144, 10, 13syl2anc 406 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )
15 mulsrpr 7483 . . . . . 6  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  (
( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  )
1612, 10, 14, 10, 15syl22anc 1198 . . . . 5  |-  ( N  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  )
17 recidpipr 7585 . . . . . . 7  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
181, 4, 17recidpirqlemcalc 7586 . . . . . 6  |-  ( N  e.  N.  ->  (
( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
19 df-1r 7469 . . . . . . . 8  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2019eqeq2i 2123 . . . . . . 7  |-  ( [
<. ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R  <->  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
21 mulclpr 7322 . . . . . . . . . 10  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  ( <. { l  |  l  <Q 
( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )  ->  ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P. )
2212, 14, 21syl2anc 406 . . . . . . . . 9  |-  ( N  e.  N.  ->  (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P. )
239, 9pm3.2i 268 . . . . . . . . . 10  |-  ( 1P  e.  P.  /\  1P  e.  P. )
24 mulclpr 7322 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  .P.  1P )  e.  P. )
2523, 24mp1i 10 . . . . . . . . 9  |-  ( N  e.  N.  ->  ( 1P  .P.  1P )  e. 
P. )
26 addclpr 7287 . . . . . . . . 9  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P.  /\  ( 1P  .P.  1P )  e.  P. )  -> 
( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P. )
2722, 25, 26syl2anc 406 . . . . . . . 8  |-  ( N  e.  N.  ->  (
( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P. )
28 mulclpr 7322 . . . . . . . . . 10  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  e.  P. )
2912, 10, 28syl2anc 406 . . . . . . . . 9  |-  ( N  e.  N.  ->  (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  e.  P. )
30 mulclpr 7322 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )  ->  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )
3110, 14, 30syl2anc 406 . . . . . . . . 9  |-  ( N  e.  N.  ->  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )
32 addclpr 7287 . . . . . . . . 9  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  1P )  e.  P.  /\  ( 1P  .P.  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )  ->  ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )
3329, 31, 32syl2anc 406 . . . . . . . 8  |-  ( N  e.  N.  ->  (
( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )
34 addclpr 7287 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
3523, 34mp1i 10 . . . . . . . 8  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  e. 
P. )
36 enreceq 7473 . . . . . . . 8  |-  ( ( ( ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P.  /\  ( (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )  /\  ( ( 1P 
+P.  1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3727, 33, 35, 10, 36syl22anc 1198 . . . . . . 7  |-  ( N  e.  N.  ->  ( [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3820, 37syl5bb 191 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3918, 38mpbird 166 . . . . 5  |-  ( N  e.  N.  ->  [ <. ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R )
4016, 39eqtrd 2145 . . . 4  |-  ( N  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
4140opeq1d 3675 . . 3  |-  ( N  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  =  <. 1R ,  0R >. )
42 df-1 7549 . . 3  |-  1  =  <. 1R ,  0R >.
4341, 42syl6eqr 2163 . 2  |-  ( N  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  =  1
)
448, 43eqtrd 2145 1  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   {cab 2099   <.cop 3494   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   1oc1o 6258   [cec 6379   N.cnpi 7022    ~Q ceq 7029   *Qcrq 7034    <Q cltq 7035   P.cnp 7041   1Pc1p 7042    +P. cpp 7043    .P. cmp 7044    ~R cer 7046   R.cnr 7047   0Rc0r 7048   1Rc1r 7049    .R cmr 7052   1c1 7542    x. cmul 7546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-2o 6266  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-pli 7055  df-mi 7056  df-lti 7057  df-plpq 7094  df-mpq 7095  df-enq 7097  df-nqqs 7098  df-plqqs 7099  df-mqqs 7100  df-1nqqs 7101  df-rq 7102  df-ltnqqs 7103  df-enq0 7174  df-nq0 7175  df-0nq0 7176  df-plq0 7177  df-mq0 7178  df-inp 7216  df-i1p 7217  df-iplp 7218  df-imp 7219  df-enr 7463  df-nr 7464  df-plr 7465  df-mr 7466  df-0r 7468  df-1r 7469  df-m1r 7470  df-c 7547  df-1 7549  df-mul 7553
This theorem is referenced by:  recriota  7619
  Copyright terms: Public domain W3C validator