ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf1oglem2 Unicode version

Theorem seqf1oglem2 10581
Description: Lemma for seqf1og 10582. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqf1o.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqf1o.5  |-  ( ph  ->  C  C_  S )
seqf1og.p  |-  ( ph  ->  .+  e.  V )
seqf1olem.5  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) ) )
seqf1olem.6  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> C )
seqf1olem.7  |-  J  =  ( k  e.  ( M ... N ) 
|->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )
seqf1olem.8  |-  K  =  ( `' F `  ( N  +  1
) )
seqf1olem.9  |-  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
Assertion
Ref Expression
seqf1oglem2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) ) )
Distinct variable groups:    f, g, k, x, y, z, F   
f, G, g, k, x, y, z    f, M, g, k, x, y, z    .+ , f, g, k, x, y, z    f, J, g, x, y, z   
f, N, g, k, x, y, z    k, K, x, y, z    ph, f,
g, k, x, y, z    S, k, x, y, z    C, f, g, k, x, y, z
Allowed substitution hints:    S( f, g)    J( k)    K( f, g)    V( x, y, z, f, g, k)

Proof of Theorem seqf1oglem2
StepHypRef Expression
1 seqf1olem.6 . . . . . . . . . 10  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> C )
21ffnd 5396 . . . . . . . . 9  |-  ( ph  ->  G  Fn  ( M ... ( N  + 
1 ) ) )
3 fzssp1 10123 . . . . . . . . 9  |-  ( M ... N )  C_  ( M ... ( N  +  1 ) )
4 fnssres 5359 . . . . . . . . 9  |-  ( ( G  Fn  ( M ... ( N  + 
1 ) )  /\  ( M ... N ) 
C_  ( M ... ( N  +  1
) ) )  -> 
( G  |`  ( M ... N ) )  Fn  ( M ... N ) )
52, 3, 4sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( G  |`  ( M ... N ) )  Fn  ( M ... N ) )
6 seqf1o.4 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluzel2 9587 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
9 eluzelz 9591 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10492 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fnfi 6985 . . . . . . . 8  |-  ( ( ( G  |`  ( M ... N ) )  Fn  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( G  |`  ( M ... N ) )  e. 
Fin )
135, 11, 12syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( G  |`  ( M ... N ) )  e.  Fin )
1413elexd 2773 . . . . . 6  |-  ( ph  ->  ( G  |`  ( M ... N ) )  e.  _V )
15 seqf1o.1 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
16 seqf1o.2 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
17 seqf1o.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
18 seqf1o.5 . . . . . . . . 9  |-  ( ph  ->  C  C_  S )
19 seqf1og.p . . . . . . . . 9  |-  ( ph  ->  .+  e.  V )
20 seqf1olem.5 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) ) )
21 seqf1olem.7 . . . . . . . . 9  |-  J  =  ( k  e.  ( M ... N ) 
|->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )
22 seqf1olem.8 . . . . . . . . 9  |-  K  =  ( `' F `  ( N  +  1
) )
2315, 16, 17, 6, 18, 19, 20, 1, 21, 22seqf1oglem1 10580 . . . . . . . 8  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
24 f1of 5492 . . . . . . . 8  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
2625, 11fexd 5780 . . . . . 6  |-  ( ph  ->  J  e.  _V )
2714, 26jca 306 . . . . 5  |-  ( ph  ->  ( ( G  |`  ( M ... N ) )  e.  _V  /\  J  e.  _V )
)
28 seqf1olem.9 . . . . 5  |-  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
29 fssres 5421 . . . . . . 7  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> C  /\  ( M ... N )  C_  ( M ... ( N  + 
1 ) ) )  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )
301, 3, 29sylancl 413 . . . . . 6  |-  ( ph  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )
3123, 30jca 306 . . . . 5  |-  ( ph  ->  ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C ) )
32 f1oeq1 5480 . . . . . . . 8  |-  ( f  =  J  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
33 feq1 5378 . . . . . . . 8  |-  ( g  =  ( G  |`  ( M ... N ) )  ->  ( g : ( M ... N ) --> C  <->  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C ) )
3432, 33bi2anan9r 607 . . . . . . 7  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  <->  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C ) ) )
35 coeq1 4813 . . . . . . . . . . 11  |-  ( g  =  ( G  |`  ( M ... N ) )  ->  ( g  o.  f )  =  ( ( G  |`  ( M ... N ) )  o.  f ) )
36 coeq2 4814 . . . . . . . . . . 11  |-  ( f  =  J  ->  (
( G  |`  ( M ... N ) )  o.  f )  =  ( ( G  |`  ( M ... N ) )  o.  J ) )
3735, 36sylan9eq 2246 . . . . . . . . . 10  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
g  o.  f )  =  ( ( G  |`  ( M ... N
) )  o.  J
) )
3837seqeq3d 10516 . . . . . . . . 9  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  seq M (  .+  , 
( g  o.  f
) )  =  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) )
3938fveq1d 5548 . . . . . . . 8  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )
40 simpl 109 . . . . . . . . . 10  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  g  =  ( G  |`  ( M ... N ) ) )
4140seqeq3d 10516 . . . . . . . . 9  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  seq M (  .+  , 
g )  =  seq M (  .+  , 
( G  |`  ( M ... N ) ) ) )
4241fveq1d 5548 . . . . . . . 8  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (  seq M (  .+  , 
g ) `  N
)  =  (  seq M (  .+  , 
( G  |`  ( M ... N ) ) ) `  N ) )
4339, 42eqeq12d 2208 . . . . . . 7  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N )  <->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) )
4434, 43imbi12d 234 . . . . . 6  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) )  <->  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) ) )
4544spc2gv 2851 . . . . 5  |-  ( ( ( G  |`  ( M ... N ) )  e.  _V  /\  J  e.  _V )  ->  ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) )  ->  (
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) ) )
4627, 28, 31, 45syl3c 63 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M (  .+  ,  ( G  |`  ( M ... N ) ) ) `  N
) )
47 fvres 5570 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  (
( G  |`  ( M ... N ) ) `
 x )  =  ( G `  x
) )
4847adantl 277 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  x )  =  ( G `  x ) )
4910peano2zd 9432 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
508, 49fzfigd 10492 . . . . . . 7  |-  ( ph  ->  ( M ... ( N  +  1 ) )  e.  Fin )
511, 50fexd 5780 . . . . . 6  |-  ( ph  ->  G  e.  _V )
52 resexg 4976 . . . . . 6  |-  ( G  e.  _V  ->  ( G  |`  ( M ... N ) )  e. 
_V )
5351, 52syl 14 . . . . 5  |-  ( ph  ->  ( G  |`  ( M ... N ) )  e.  _V )
546, 48, 19, 53, 51seqfveqg 10539 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  |`  ( M ... N
) ) ) `  N )  =  (  seq M (  .+  ,  G ) `  N
) )
5546, 54eqtrd 2226 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M (  .+  ,  G ) `  N
) )
5655oveq1d 5925 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
5715adantlr 477 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
5817adantlr 477 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  S  /\  y  e.  S  /\  z  e.  S )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
59 elfzuz3 10078 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
6059adantl 277 . . . . . 6  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  K )
)
61 eluzp1p1 9608 . . . . . 6  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
6260, 61syl 14 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
6319adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  .+  e.  V
)
6451adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  G  e.  _V )
65 f1of 5492 . . . . . . . . 9  |-  ( F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) )  ->  F :
( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1
) ) )
6620, 65syl 14 . . . . . . . 8  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
6766, 50fexd 5780 . . . . . . 7  |-  ( ph  ->  F  e.  _V )
6867adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  F  e.  _V )
69 coexg 5202 . . . . . 6  |-  ( ( G  e.  _V  /\  F  e.  _V )  ->  ( G  o.  F
)  e.  _V )
7064, 68, 69syl2anc 411 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G  o.  F )  e.  _V )
71 elfzuz 10077 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
7271adantl 277 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  K  e.  ( ZZ>= `  M )
)
73 fco 5411 . . . . . . . . 9  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> C  /\  F : ( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1 ) ) )  ->  ( G  o.  F ) : ( M ... ( N  +  1
) ) --> C )
741, 66, 73syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( G  o.  F
) : ( M ... ( N  + 
1 ) ) --> C )
7574, 18fssd 5408 . . . . . . 7  |-  ( ph  ->  ( G  o.  F
) : ( M ... ( N  + 
1 ) ) --> S )
7675ffvelcdmda 5685 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  e.  S
)
7776adantlr 477 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
7857, 58, 62, 63, 70, 72, 77seqsplitg 10550 . . . 4  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )
79 elfzp12 10155 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
8079biimpa 296 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 ) ... N ) ) )
816, 80sylan 283 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )
82 seqeq1 10511 . . . . . . . . . . 11  |-  ( K  =  M  ->  seq K (  .+  , 
( G  o.  F
) )  =  seq M (  .+  , 
( G  o.  F
) ) )
8382eqcomd 2199 . . . . . . . . . 10  |-  ( K  =  M  ->  seq M (  .+  , 
( G  o.  F
) )  =  seq K (  .+  , 
( G  o.  F
) ) )
8483fveq1d 5548 . . . . . . . . 9  |-  ( K  =  M  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  (  seq K (  .+  , 
( G  o.  F
) ) `  K
) )
85 f1ocnv 5505 . . . . . . . . . . . . . 14  |-  ( F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) )  ->  `' F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) ) )
86 f1of 5492 . . . . . . . . . . . . . 14  |-  ( `' F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  ->  `' F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
8720, 85, 863syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  `' F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
88 peano2uz 9638 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
89 eluzfz2 10088 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( M ... ( N  +  1 ) ) )
906, 88, 893syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  +  1 )  e.  ( M ... ( N  + 
1 ) ) )
9187, 90ffvelcdmd 5686 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F `  ( N  +  1
) )  e.  ( M ... ( N  +  1 ) ) )
9222, 91eqeltrid 2280 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ( M ... ( N  + 
1 ) ) )
9392elfzelzd 10082 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ZZ )
9451, 67, 69syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( G  o.  F
)  e.  _V )
95 seq1g 10524 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  ( G  o.  F
)  e.  _V  /\  .+  e.  V )  -> 
(  seq K (  .+  ,  ( G  o.  F ) ) `  K )  =  ( ( G  o.  F
) `  K )
)
9693, 94, 19, 95syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  (  seq K ( 
.+  ,  ( G  o.  F ) ) `
 K )  =  ( ( G  o.  F ) `  K
) )
9784, 96sylan9eqr 2248 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  ( ( G  o.  F ) `
 K ) )
9897oveq1d 5925 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( ( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )
99 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  K  =  M )
100 eluzfz1 10087 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
1016, 100syl 14 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( M ... N ) )
102101adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  M  e.  ( M ... N
) )
10399, 102eqeltrd 2270 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  K  e.  ( M ... N
) )
10416adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
10518adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  C  C_  S
)
10674adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G  o.  F ) : ( M ... ( N  +  1 ) ) --> C )
10792adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  K  e.  ( M ... ( N  +  1 ) ) )
108 peano2uz 9638 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
109 fzss1 10119 . . . . . . . . . . 11  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( K  +  1 ) ... ( N  + 
1 ) )  C_  ( M ... ( N  +  1 ) ) )
11072, 108, 1093syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( ( K  +  1 ) ... ( N  + 
1 ) )  C_  ( M ... ( N  +  1 ) ) )
11150adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( M ... ( N  +  1 ) )  e.  Fin )
11257, 104, 58, 62, 105, 63, 106, 107, 110, 111seqf1oglem2a 10579 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (
( G  o.  F
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  .+  (
( G  o.  F
) `  K )
) )
113 1zzd 9334 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  1  e.  ZZ )
114 elfzuz 10077 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  K  e.  ( ZZ>= `  M )
)
115 fzss1 10119 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
11692, 114, 1153syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ... N
)  C_  ( M ... N ) )
117116sselda 3179 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ( M ... N ) )
11825ffvelcdmda 5685 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( J `  x )  e.  ( M ... N ) )
119117, 118syldan 282 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  e.  ( M ... N ) )
120119fvresd 5571 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( J `  x ) ) )
121 breq1 4032 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  (
k  <  K  <->  x  <  K ) )
122 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  k  =  x )
123 oveq1 5917 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  (
k  +  1 )  =  ( x  + 
1 ) )
124121, 122, 123ifbieq12d 3583 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  if ( k  <  K ,  k ,  ( k  +  1 ) )  =  if ( x  <  K ,  x ,  ( x  +  1 ) ) )
125124fveq2d 5550 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  ( F `  if (
k  <  K , 
k ,  ( k  +  1 ) ) )  =  ( F `
 if ( x  <  K ,  x ,  ( x  + 
1 ) ) ) )
12666adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  F :
( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1
) ) )
1273, 117sselid 3177 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
128 fzp1elp1 10131 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( M ... N )  ->  (
x  +  1 )  e.  ( M ... ( N  +  1
) ) )
129117, 128syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( x  +  1 )  e.  ( M ... ( N  +  1 ) ) )
130117elfzelzd 10082 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ZZ )
13193adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  K  e.  ZZ )
132 zdclt 9384 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  -> DECID  x  <  K )
133130, 131, 132syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  -> DECID  x  <  K )
134127, 129, 133ifcldcd 3593 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  if (
x  <  K ,  x ,  ( x  +  1 ) )  e.  ( M ... ( N  +  1
) ) )
135126, 134ffvelcdmd 5686 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  e.  ( M ... ( N  +  1 ) ) )
13621, 125, 117, 135fvmptd3 5643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
13793zred 9429 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  e.  RR )
138137adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  K  e.  RR )
139 elfzelz 10081 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( K ... N )  ->  x  e.  ZZ )
140139adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ZZ )
141140zred 9429 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  RR )
142 elfzle1 10083 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( K ... N )  ->  K  <_  x )
143142adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  K  <_  x )
144138, 141, 143lensymd 8131 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  -.  x  <  K )
145 iffalse 3565 . . . . . . . . . . . . . . . . . 18  |-  ( -.  x  <  K  ->  if ( x  <  K ,  x ,  ( x  +  1 ) )  =  ( x  + 
1 ) )
146145fveq2d 5550 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  <  K  -> 
( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 ( x  + 
1 ) ) )
147144, 146syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  =  ( F `  (
x  +  1 ) ) )
148136, 147eqtrd 2226 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  =  ( F `  ( x  +  1 ) ) )
149148fveq2d 5550 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( G `  ( J `  x
) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
150120, 149eqtrd 2226 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( F `  ( x  +  1
) ) ) )
151 fvco3 5620 . . . . . . . . . . . . . . 15  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
15225, 151sylan 283 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
153117, 152syldan 282 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
154 fvco3 5620 . . . . . . . . . . . . . . 15  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  ( x  + 
1 )  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  ( x  +  1 ) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
15566, 154sylan 283 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  +  1 )  e.  ( M ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  ( x  +  1 ) )  =  ( G `  ( F `  ( x  +  1 ) ) ) )
156129, 155syldan 282 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  o.  F ) `  ( x  +  1 ) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
157150, 153, 1563eqtr4d 2236 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  o.  F
) `  ( x  +  1 ) ) )
158157adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( K ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  =  ( ( G  o.  F ) `  (
x  +  1 ) ) )
15964, 52syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G  |`  ( M ... N
) )  e.  _V )
16026adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  J  e.  _V )
161 coexg 5202 . . . . . . . . . . . 12  |-  ( ( ( G  |`  ( M ... N ) )  e.  _V  /\  J  e.  _V )  ->  (
( G  |`  ( M ... N ) )  o.  J )  e. 
_V )
162159, 160, 161syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( ( G  |`  ( M ... N ) )  o.  J )  e.  _V )
16360, 113, 158, 63, 162, 70seqshft2g 10543 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )
164 fvco3 5620 . . . . . . . . . . . . 13  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  K  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  K )  =  ( G `  ( F `
 K ) ) )
16566, 92, 164syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  =  ( G `
 ( F `  K ) ) )
16622fveq2i 5549 . . . . . . . . . . . . . 14  |-  ( F `
 K )  =  ( F `  ( `' F `  ( N  +  1 ) ) )
167 f1ocnvfv2 5813 . . . . . . . . . . . . . . 15  |-  ( ( F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  /\  ( N  +  1
)  e.  ( M ... ( N  + 
1 ) ) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
16820, 90, 167syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
169166, 168eqtrid 2238 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  K
)  =  ( N  +  1 ) )
170169fveq2d 5550 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  ( F `  K )
)  =  ( G `
 ( N  + 
1 ) ) )
171165, 170eqtr2d 2227 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  ( N  +  1 ) )  =  ( ( G  o.  F ) `
 K ) )
172171adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G `  ( N  +  1 ) )  =  ( ( G  o.  F
) `  K )
)
173163, 172oveq12d 5928 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) 
.+  ( G `  ( N  +  1
) ) )  =  ( (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) 
.+  ( ( G  o.  F ) `  K ) ) )
174112, 173eqtr4d 2229 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (
( G  o.  F
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
175103, 174syldan 282 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
17699seqeq1d 10514 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) )  =  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) )
177176fveq1d 5548 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) )
178177oveq1d 5925 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) )
17998, 175, 1783eqtrd 2230 . . . . . 6  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
180 elfzuz 10077 . . . . . . . . . . 11  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
181 eluzp1m1 9606 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
1828, 180, 181syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M
) )
18310zcnd 9430 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  CC )
184 ax-1cn 7955 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
185 pncan 8215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
186183, 184, 185sylancl 413 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
187 elfzelz 10081 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  K  e.  ZZ )
188 peano2zm 9345 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
18992, 187, 1883syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( K  -  1 )  e.  ZZ )
190 elfzuz3 10078 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  ( N  +  1 )  e.  ( ZZ>= `  K
) )
19192, 190syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  K ) )
19293zcnd 9430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  K  e.  CC )
193 npcan 8218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
194192, 184, 193sylancl 413 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( K  - 
1 )  +  1 )  =  K )
195194fveq2d 5550 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ZZ>= `  ( ( K  -  1 )  +  1 ) )  =  ( ZZ>= `  K
) )
196191, 195eleqtrrd 2273 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( ( K  - 
1 )  +  1 ) ) )
197 eluzp1m1 9606 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  -  1 )  e.  ZZ  /\  ( N  +  1
)  e.  ( ZZ>= `  ( ( K  - 
1 )  +  1 ) ) )  -> 
( ( N  + 
1 )  -  1 )  e.  ( ZZ>= `  ( K  -  1
) ) )
198189, 196, 197syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  e.  ( ZZ>= `  ( K  -  1
) ) )
199186, 198eqeltrrd 2271 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( ZZ>= `  ( K  -  1
) ) )
200 fzss2 10120 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
201199, 200syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
202201sselda 3179 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... N ) )
203202, 118syldan 282 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  e.  ( M ... N ) )
204203fvresd 5571 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( J `  x ) ) )
205 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
20666adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  F :
( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1
) ) )
207 fzelp1 10130 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( M ... N )  ->  x  e.  ( M ... ( N  +  1 ) ) )
208207adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
209128adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( x  +  1 )  e.  ( M ... ( N  +  1 ) ) )
210 elfzelz 10081 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
211210, 93, 132syl2anr 290 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( M ... N ) )  -> DECID  x  <  K )
212208, 209, 211ifcldcd 3593 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  if (
x  <  K ,  x ,  ( x  +  1 ) )  e.  ( M ... ( N  +  1
) ) )
213206, 212ffvelcdmd 5686 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  e.  ( M ... ( N  +  1 ) ) )
21421, 125, 205, 213fvmptd3 5643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
215202, 214syldan 282 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
216 elfzm11 10147 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  e.  ( M ... ( K  -  1 ) )  <-> 
( x  e.  ZZ  /\  M  <_  x  /\  x  <  K ) ) )
2178, 93, 216syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  ( M ... ( K  -  1 ) )  <-> 
( x  e.  ZZ  /\  M  <_  x  /\  x  <  K ) ) )
218217biimpa 296 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( x  e.  ZZ  /\  M  <_  x  /\  x  <  K
) )
219218simp3d 1013 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  <  K )
220 iftrue 3562 . . . . . . . . . . . . . . . . 17  |-  ( x  <  K  ->  if ( x  <  K ,  x ,  ( x  +  1 ) )  =  x )
221220fveq2d 5550 . . . . . . . . . . . . . . . 16  |-  ( x  <  K  ->  ( F `  if (
x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 x ) )
222219, 221syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  =  ( F `  x
) )
223215, 222eqtrd 2226 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  =  ( F `  x ) )
224223fveq2d 5550 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( G `  ( J `  x
) )  =  ( G `  ( F `
 x ) ) )
225204, 224eqtr2d 2227 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( G `  ( F `  x
) )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
226 peano2uz 9638 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  -  1 ) ) )
227 fzss2 10120 . . . . . . . . . . . . . . 15  |-  ( ( N  +  1 )  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... ( N  + 
1 ) ) )
228199, 226, 2273syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... ( N  +  1 ) ) )
229228sselda 3179 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
230 fvco3 5620 . . . . . . . . . . . . . 14  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
23166, 230sylan 283 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
232229, 231syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
233202, 152syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
234225, 232, 2333eqtr4d 2236 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `
 x ) )
235234adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( G  o.  F
) `  x )  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `  x
) )
23619adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  .+  e.  V )
23794adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G  o.  F )  e.  _V )
23827, 161syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( ( G  |`  ( M ... N ) )  o.  J )  e.  _V )
239238adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( G  |`  ( M ... N ) )  o.  J )  e. 
_V )
240182, 235, 236, 237, 239seqfveqg 10539 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) )
241 fzp1ss 10129 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
2426, 7, 2413syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
243242sselda 3179 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  ( M ... N
) )
244243, 174syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
245240, 244oveq12d 5928 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  .+  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 ( K  - 
1 ) )  .+  ( (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) ) )
246229, 76syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  e.  S
)
247246adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
24815adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
249182, 247, 248, 237, 236seqclg 10533 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  e.  S )
25074, 92ffvelcdmd 5686 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  e.  C )
25118, 250sseldd 3180 . . . . . . . . . . 11  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  e.  S )
252251adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( G  o.  F
) `  K )  e.  S )
253110sselda 3179 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( ( K  + 
1 ) ... ( N  +  1 ) ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
254253, 77syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( ( K  + 
1 ) ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
25562, 254, 57, 70, 63seqclg 10533 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  e.  S )
256243, 255syldan 282 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  e.  S )
257249, 252, 2563jca 1179 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  e.  S  /\  ( ( G  o.  F ) `  K
)  e.  S  /\  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  e.  S
) )
25817caovassg 6069 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  e.  S  /\  ( ( G  o.  F ) `  K
)  e.  S  /\  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  e.  S
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( ( G  o.  F ) `
 K )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) ) )
259257, 258syldan 282 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( ( G  o.  F ) `
 K )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) ) )
2601, 18fssd 5408 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> S )
261 fssres 5421 . . . . . . . . . . . . . . . 16  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> S  /\  ( M ... N )  C_  ( M ... ( N  + 
1 ) ) )  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> S )
262260, 3, 261sylancl 413 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> S )
263 fco 5411 . . . . . . . . . . . . . . 15  |-  ( ( ( G  |`  ( M ... N ) ) : ( M ... N ) --> S  /\  J : ( M ... N ) --> ( M ... N ) )  ->  ( ( G  |`  ( M ... N
) )  o.  J
) : ( M ... N ) --> S )
264262, 25, 263syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( G  |`  ( M ... N ) )  o.  J ) : ( M ... N ) --> S )
265264ffvelcdmda 5685 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
266202, 265syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
267266adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
268182, 267, 248, 239, 236seqclg 10533 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) )  e.  S )
269 elfzuz3 10078 . . . . . . . . . . . 12  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  K )
)
270269adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  N  e.  ( ZZ>= `  K )
)
271117, 265syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
272271adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( K ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
273270, 272, 248, 239, 236seqclg 10533 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  e.  S )
274260, 90ffvelcdmd 5686 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  ( N  +  1 ) )  e.  S )
275274adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  ( N  +  1 ) )  e.  S )
276268, 273, 2753jca 1179 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  e.  S  /\  (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  e.  S  /\  ( G `  ( N  +  1 ) )  e.  S ) )
27717caovassg 6069 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) )  e.  S  /\  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  e.  S  /\  ( G `  ( N  +  1 ) )  e.  S ) )  ->  ( ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )  .+  ( G `
 ( N  + 
1 ) ) )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  ( (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) 
.+  ( G `  ( N  +  1
) ) ) ) )
278276, 277syldan 282 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 ( K  - 
1 ) )  .+  (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
) )  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  ( (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) ) )
279245, 259, 2783eqtr4d 2236 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) 
.+  ( G `  ( N  +  1
) ) ) )
2808adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
281180adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
282280, 281, 236, 237seqm1g 10535 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  .+  (
( G  o.  F
) `  K )
) )
283282oveq1d 5925 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) )
28417adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  (
x  e.  S  /\  y  e.  S  /\  z  e.  S )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
285 elfzelz 10081 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ZZ )
286285adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  ZZ )
287286zcnd 9430 . . . . . . . . . . . . 13  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  CC )
288287, 184, 193sylancl 413 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( K  -  1 )  +  1 )  =  K )
289288fveq2d 5550 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( ZZ>=
`  ( ( K  -  1 )  +  1 ) )  =  ( ZZ>= `  K )
)
290270, 289eleqtrrd 2273 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  N  e.  ( ZZ>= `  ( ( K  -  1 )  +  1 ) ) )
291265adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
292248, 284, 290, 236, 239, 182, 291seqsplitg 10550 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq (
( K  -  1 )  +  1 ) (  .+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) )
293288seqeq1d 10514 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) )  =  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) )
294293fveq1d 5548 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) )
295294oveq2d 5926 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) ) )
296292, 295eqtrd 2226 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) )
297296oveq1d 5925 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) )  =  ( ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) 
.+  ( G `  ( N  +  1
) ) ) )
298279, 283, 2973eqtr4d 2236 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
299179, 298jaodan 798 . . . . 5  |-  ( (
ph  /\  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )  -> 
( (  seq M
(  .+  ,  ( G  o.  F )
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
30081, 299syldan 282 . . . 4  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
30178, 300eqtrd 2226 . . 3  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
3026adantr 276 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  N  e.  ( ZZ>= `  M )
)
30394adantr 276 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( G  o.  F )  e.  _V )
30419adantr 276 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  .+  e.  V )
305 seqp1g 10527 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( G  o.  F )  e.  _V  /\  .+  e.  V )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) ) )
306302, 303, 304, 305syl3anc 1249 . . . 4  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) ) )
307214adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( J `  x
)  =  ( F `
 if ( x  <  K ,  x ,  ( x  + 
1 ) ) ) )
308210zred 9429 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
309308adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
31010zred 9429 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  RR )
311310adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  N  e.  RR )
312 peano2re 8145 . . . . . . . . . . . . . . 15  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
313311, 312syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( N  +  1 )  e.  RR )
314 elfzle2 10084 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M ... N )  ->  x  <_  N )
315314adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  <_  N )
316311ltp1d 8939 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  N  <  ( N  +  1 ) )
317309, 311, 313, 315, 316lelttrd 8134 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  <  ( N  +  1 ) )
318317adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  <  ( N  + 
1 ) )
319 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  K  =  ( N  +  1 ) )
320318, 319breqtrrd 4057 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  <  K )
321320, 221syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 x ) )
322307, 321eqtrd 2226 . . . . . . . . 9  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( J `  x
)  =  ( F `
 x ) )
323322fveq2d 5550 . . . . . . . 8  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  |`  ( M ... N ) ) `  ( J `
 x ) )  =  ( ( G  |`  ( M ... N
) ) `  ( F `  x )
) )
32466ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... ( N  +  1
) ) --> ( M ... ( N  + 
1 ) ) )
325207adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
326324, 325ffvelcdmd 5686 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  ( M ... ( N  + 
1 ) ) )
327326elfzelzd 10082 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  ZZ )
3286ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  M ) )
329328, 7syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  M  e.  ZZ )
330328, 9syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ZZ )
331 fzdcel 10096 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( F `  x
)  e.  ( M ... N ) )
332327, 329, 330, 331syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> DECID  ( F `  x )  e.  ( M ... N
) )
333308adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
334333, 320gtned 8122 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  K  =/=  x )
335 elfzp1 10128 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( F `  x )  e.  ( M ... ( N  +  1 ) )  <->  ( ( F `
 x )  e.  ( M ... N
)  \/  ( F `
 x )  =  ( N  +  1 ) ) ) )
336328, 335syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  e.  ( M ... ( N  +  1 ) )  <-> 
( ( F `  x )  e.  ( M ... N )  \/  ( F `  x )  =  ( N  +  1 ) ) ) )
337326, 336mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  e.  ( M ... N )  \/  ( F `  x )  =  ( N  +  1 ) ) )
338337ord 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( -.  ( F `
 x )  e.  ( M ... N
)  ->  ( F `  x )  =  ( N  +  1 ) ) )
33920ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) ) )
340 f1ocnvfv 5814 . . . . . . . . . . . . . . 15  |-  ( ( F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  ( `' F `  ( N  +  1 ) )  =  x ) )
341339, 325, 340syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  ( `' F `  ( N  +  1 ) )  =  x ) )
34222eqeq1i 2201 . . . . . . . . . . . . . 14  |-  ( K  =  x  <->  ( `' F `  ( N  +  1 ) )  =  x )
343341, 342imbitrrdi 162 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  K  =  x ) )
344338, 343syld 45 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( -.  ( F `
 x )  e.  ( M ... N
)  ->  K  =  x ) )
345344a1d 22 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
(DECID  ( F `  x
)  e.  ( M ... N )  -> 
( -.  ( F `
 x )  e.  ( M ... N
)  ->  K  =  x ) ) )
346345necon1addc 2440 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
(DECID  ( F `  x
)  e.  ( M ... N )  -> 
( K  =/=  x  ->  ( F `  x
)  e.  ( M ... N ) ) ) )
347332, 334, 346mp2d 47 . . . . . . . . 9  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  ( M ... N ) )
348347fvresd 5571 . . . . . . . 8  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  |`  ( M ... N ) ) `  ( F `
 x ) )  =  ( G `  ( F `  x ) ) )
349323, 348eqtr2d 2227 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( G `  ( F `  x )
)  =  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) ) )
35066, 207, 230syl2an 289 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
351350adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
352152adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( ( G  |`  ( M ... N
) )  o.  J
) `  x )  =  ( ( G  |`  ( M ... N
) ) `  ( J `  x )
) )
353349, 351, 3523eqtr4d 2236 . . . . . 6  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  o.  F ) `  x
)  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `  x ) )
354238adantr 276 . . . . . 6  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
( G  |`  ( M ... N ) )  o.  J )  e. 
_V )
355302, 353, 304, 303, 354seqfveqg 10539 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  N
)  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )
356 fvco3 5620 . . . . . . . 8  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  ( N  + 
1 )  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  ( N  +  1 ) )  =  ( G `  ( F `
 ( N  + 
1 ) ) ) )
35766, 90, 356syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( G  o.  F ) `  ( N  +  1 ) )  =  ( G `
 ( F `  ( N  +  1
) ) ) )
358357adantr 276 . . . . . 6  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
( G  o.  F
) `  ( N  +  1 ) )  =  ( G `  ( F `  ( N  +  1 ) ) ) )
359 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  K  =  ( N  + 
1 ) )
36022, 359eqtr3id 2240 . . . . . . . . 9  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( `' F `  ( N  +  1 ) )  =  ( N  + 
1 ) )
361360fveq2d 5550 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( F `
 ( N  + 
1 ) ) )
362168adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
363361, 362eqtr3d 2228 . . . . . . 7  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( N  +  1 ) )  =  ( N  + 
1 ) )
364363fveq2d 5550 . . . . . 6  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( G `  ( F `  ( N  +  1 ) ) )  =  ( G `  ( N  +  1 ) ) )
365358, 364eqtrd 2226 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
( G  o.  F
) `  ( N  +  1 ) )  =  ( G `  ( N  +  1
) ) )
366355, 365oveq12d 5928 . . . 4  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
367306, 366eqtrd 2226 . . 3  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
368 elfzp1 10128 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... ( N  +  1 ) )  <->  ( K  e.  ( M ... N
)  \/  K  =  ( N  +  1 ) ) ) )
3696, 368syl 14 . . . 4  |-  ( ph  ->  ( K  e.  ( M ... ( N  +  1 ) )  <-> 
( K  e.  ( M ... N )  \/  K  =  ( N  +  1 ) ) ) )
37092, 369mpbid 147 . . 3  |-  ( ph  ->  ( K  e.  ( M ... N )  \/  K  =  ( N  +  1 ) ) )
371301, 367, 370mpjaodan 799 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) )
372 seqp1g 10527 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  _V  /\  .+  e.  V )  ->  (  seq M (  .+  ,  G ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
3736, 51, 19, 372syl3anc 1249 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  G
) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
37456, 371, 3733eqtr4d 2236 1  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    C_ wss 3153   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   `'ccnv 4654    |` cres 4657    o. ccom 4659    Fn wfn 5241   -->wf 5242   -1-1-onto->wf1o 5245   ` cfv 5246  (class class class)co 5910   Fincfn 6785   CCcc 7860   RRcr 7861   1c1 7863    + caddc 7865    < clt 8044    <_ cle 8045    - cmin 8180   ZZcz 9307   ZZ>=cuz 9582   ...cfz 10064    seqcseq 10508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509
This theorem is referenced by:  seqf1og  10582
  Copyright terms: Public domain W3C validator