ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgz Unicode version

Theorem mulgz 13687
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b  |-  B  =  ( Base `  G
)
mulgnn0z.t  |-  .x.  =  (.g
`  G )
mulgnn0z.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mulgz  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )

Proof of Theorem mulgz
StepHypRef Expression
1 grpmnd 13540 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
21adantr 276 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  G  e.  Mnd )
3 mulgnn0z.b . . . 4  |-  B  =  ( Base `  G
)
4 mulgnn0z.t . . . 4  |-  .x.  =  (.g
`  G )
5 mulgnn0z.o . . . 4  |-  .0.  =  ( 0g `  G )
63, 4, 5mulgnn0z 13686 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  -> 
( N  .x.  .0.  )  =  .0.  )
72, 6sylan 283 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
8 simpll 527 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  G  e.  Grp )
9 nn0z 9466 . . . . 5  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  -u N  e.  ZZ )
113, 5grpidcl 13562 . . . . 5  |-  ( G  e.  Grp  ->  .0.  e.  B )
1211ad2antrr 488 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  .0.  e.  B
)
13 eqid 2229 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
143, 4, 13mulgneg 13677 . . . 4  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  .0.  e.  B )  -> 
( -u -u N  .x.  .0.  )  =  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) ) )
158, 10, 12, 14syl3anc 1271 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u -u N  .x.  .0.  )  =  ( ( invg `  G ) `  ( -u N  .x.  .0.  )
) )
16 zcn 9451 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
1716ad2antlr 489 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  N  e.  CC )
1817negnegd 8448 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  -u -u N  =  N )
1918oveq1d 6016 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u -u N  .x.  .0.  )  =  ( N  .x.  .0.  )
)
203, 4, 5mulgnn0z 13686 . . . . . 6  |-  ( ( G  e.  Mnd  /\  -u N  e.  NN0 )  ->  ( -u N  .x.  .0.  )  =  .0.  )
212, 20sylan 283 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u N  .x.  .0.  )  =  .0.  )
2221fveq2d 5631 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) )  =  ( ( invg `  G ) `  .0.  ) )
235, 13grpinvid 13593 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
2423ad2antrr 488 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 .0.  )  =  .0.  )
2522, 24eqtrd 2262 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) )  =  .0.  )
2615, 19, 253eqtr3d 2270 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
27 elznn0 9461 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2827simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
2928adantl 277 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
307, 26, 29mpjaodan 803 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   -ucneg 8318   NN0cn0 9369   ZZcz 9446   Basecbs 13032   0gc0g 13289   Mndcmnd 13449   Grpcgrp 13533   invgcminusg 13534  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgmodid  13698
  Copyright terms: Public domain W3C validator