ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgz Unicode version

Theorem mulgz 13601
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b  |-  B  =  ( Base `  G
)
mulgnn0z.t  |-  .x.  =  (.g
`  G )
mulgnn0z.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mulgz  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )

Proof of Theorem mulgz
StepHypRef Expression
1 grpmnd 13454 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
21adantr 276 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  G  e.  Mnd )
3 mulgnn0z.b . . . 4  |-  B  =  ( Base `  G
)
4 mulgnn0z.t . . . 4  |-  .x.  =  (.g
`  G )
5 mulgnn0z.o . . . 4  |-  .0.  =  ( 0g `  G )
63, 4, 5mulgnn0z 13600 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  -> 
( N  .x.  .0.  )  =  .0.  )
72, 6sylan 283 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
8 simpll 527 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  G  e.  Grp )
9 nn0z 9427 . . . . 5  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  -u N  e.  ZZ )
113, 5grpidcl 13476 . . . . 5  |-  ( G  e.  Grp  ->  .0.  e.  B )
1211ad2antrr 488 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  .0.  e.  B
)
13 eqid 2207 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
143, 4, 13mulgneg 13591 . . . 4  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  .0.  e.  B )  -> 
( -u -u N  .x.  .0.  )  =  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) ) )
158, 10, 12, 14syl3anc 1250 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u -u N  .x.  .0.  )  =  ( ( invg `  G ) `  ( -u N  .x.  .0.  )
) )
16 zcn 9412 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
1716ad2antlr 489 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  N  e.  CC )
1817negnegd 8409 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  -u -u N  =  N )
1918oveq1d 5982 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u -u N  .x.  .0.  )  =  ( N  .x.  .0.  )
)
203, 4, 5mulgnn0z 13600 . . . . . 6  |-  ( ( G  e.  Mnd  /\  -u N  e.  NN0 )  ->  ( -u N  .x.  .0.  )  =  .0.  )
212, 20sylan 283 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( -u N  .x.  .0.  )  =  .0.  )
2221fveq2d 5603 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) )  =  ( ( invg `  G ) `  .0.  ) )
235, 13grpinvid 13507 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
2423ad2antrr 488 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 .0.  )  =  .0.  )
2522, 24eqtrd 2240 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( ( invg `  G ) `
 ( -u N  .x.  .0.  ) )  =  .0.  )
2615, 19, 253eqtr3d 2248 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  -u N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
27 elznn0 9422 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2827simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
2928adantl 277 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
307, 26, 29mpjaodan 800 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   -ucneg 8279   NN0cn0 9330   ZZcz 9407   Basecbs 12947   0gc0g 13203   Mndcmnd 13363   Grpcgrp 13447   invgcminusg 13448  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgmodid  13612
  Copyright terms: Public domain W3C validator