| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgneg2 | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgneg2.b |
|
| mulgneg2.m |
|
| mulgneg2.i |
|
| Ref | Expression |
|---|---|
| mulgneg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 8265 |
. . . . . . 7
| |
| 2 | neg0 8318 |
. . . . . . 7
| |
| 3 | 1, 2 | eqtrdi 2254 |
. . . . . 6
|
| 4 | 3 | oveq1d 5959 |
. . . . 5
|
| 5 | oveq1 5951 |
. . . . 5
| |
| 6 | 4, 5 | eqeq12d 2220 |
. . . 4
|
| 7 | negeq 8265 |
. . . . . 6
| |
| 8 | 7 | oveq1d 5959 |
. . . . 5
|
| 9 | oveq1 5951 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2220 |
. . . 4
|
| 11 | negeq 8265 |
. . . . . 6
| |
| 12 | 11 | oveq1d 5959 |
. . . . 5
|
| 13 | oveq1 5951 |
. . . . 5
| |
| 14 | 12, 13 | eqeq12d 2220 |
. . . 4
|
| 15 | negeq 8265 |
. . . . . 6
| |
| 16 | 15 | oveq1d 5959 |
. . . . 5
|
| 17 | oveq1 5951 |
. . . . 5
| |
| 18 | 16, 17 | eqeq12d 2220 |
. . . 4
|
| 19 | negeq 8265 |
. . . . . 6
| |
| 20 | 19 | oveq1d 5959 |
. . . . 5
|
| 21 | oveq1 5951 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2220 |
. . . 4
|
| 23 | mulgneg2.b |
. . . . . . 7
| |
| 24 | eqid 2205 |
. . . . . . 7
| |
| 25 | mulgneg2.m |
. . . . . . 7
| |
| 26 | 23, 24, 25 | mulg0 13461 |
. . . . . 6
|
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | mulgneg2.i |
. . . . . . 7
| |
| 29 | 23, 28 | grpinvcl 13380 |
. . . . . 6
|
| 30 | 23, 24, 25 | mulg0 13461 |
. . . . . 6
|
| 31 | 29, 30 | syl 14 |
. . . . 5
|
| 32 | 27, 31 | eqtr4d 2241 |
. . . 4
|
| 33 | oveq1 5951 |
. . . . . 6
| |
| 34 | nn0cn 9305 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | ax-1cn 8018 |
. . . . . . . . . 10
| |
| 37 | negdi 8329 |
. . . . . . . . . 10
| |
| 38 | 35, 36, 37 | sylancl 413 |
. . . . . . . . 9
|
| 39 | 38 | oveq1d 5959 |
. . . . . . . 8
|
| 40 | simpll 527 |
. . . . . . . . 9
| |
| 41 | nn0negz 9406 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
|
| 43 | 1z 9398 |
. . . . . . . . . 10
| |
| 44 | znegcl 9403 |
. . . . . . . . . 10
| |
| 45 | 43, 44 | mp1i 10 |
. . . . . . . . 9
|
| 46 | simplr 528 |
. . . . . . . . 9
| |
| 47 | eqid 2205 |
. . . . . . . . . 10
| |
| 48 | 23, 25, 47 | mulgdir 13490 |
. . . . . . . . 9
|
| 49 | 40, 42, 45, 46, 48 | syl13anc 1252 |
. . . . . . . 8
|
| 50 | 23, 25, 28 | mulgm1 13478 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 51 | oveq2d 5960 |
. . . . . . . 8
|
| 53 | 39, 49, 52 | 3eqtrd 2242 |
. . . . . . 7
|
| 54 | grpmnd 13339 |
. . . . . . . . 9
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . 8
|
| 56 | simpr 110 |
. . . . . . . 8
| |
| 57 | 29 | adantr 276 |
. . . . . . . 8
|
| 58 | 23, 25, 47 | mulgnn0p1 13469 |
. . . . . . . 8
|
| 59 | 55, 56, 57, 58 | syl3anc 1250 |
. . . . . . 7
|
| 60 | 53, 59 | eqeq12d 2220 |
. . . . . 6
|
| 61 | 33, 60 | imbitrrid 156 |
. . . . 5
|
| 62 | 61 | ex 115 |
. . . 4
|
| 63 | fveq2 5576 |
. . . . . 6
| |
| 64 | simpll 527 |
. . . . . . . 8
| |
| 65 | nnnegz 9375 |
. . . . . . . . 9
| |
| 66 | 65 | adantl 277 |
. . . . . . . 8
|
| 67 | simplr 528 |
. . . . . . . 8
| |
| 68 | 23, 25, 28 | mulgneg 13476 |
. . . . . . . 8
|
| 69 | 64, 66, 67, 68 | syl3anc 1250 |
. . . . . . 7
|
| 70 | id 19 |
. . . . . . . 8
| |
| 71 | 23, 25, 28 | mulgnegnn 13468 |
. . . . . . . 8
|
| 72 | 70, 29, 71 | syl2anr 290 |
. . . . . . 7
|
| 73 | 69, 72 | eqeq12d 2220 |
. . . . . 6
|
| 74 | 63, 73 | imbitrrid 156 |
. . . . 5
|
| 75 | 74 | ex 115 |
. . . 4
|
| 76 | 6, 10, 14, 18, 22, 32, 62, 75 | zindd 9491 |
. . 3
|
| 77 | 76 | 3impia 1203 |
. 2
|
| 78 | 77 | 3com23 1212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-seqfrec 10593 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-mulg 13456 |
| This theorem is referenced by: mulgass 13495 |
| Copyright terms: Public domain | W3C validator |