| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgneg2 | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgneg2.b |
|
| mulgneg2.m |
|
| mulgneg2.i |
|
| Ref | Expression |
|---|---|
| mulgneg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 8236 |
. . . . . . 7
| |
| 2 | neg0 8289 |
. . . . . . 7
| |
| 3 | 1, 2 | eqtrdi 2245 |
. . . . . 6
|
| 4 | 3 | oveq1d 5940 |
. . . . 5
|
| 5 | oveq1 5932 |
. . . . 5
| |
| 6 | 4, 5 | eqeq12d 2211 |
. . . 4
|
| 7 | negeq 8236 |
. . . . . 6
| |
| 8 | 7 | oveq1d 5940 |
. . . . 5
|
| 9 | oveq1 5932 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2211 |
. . . 4
|
| 11 | negeq 8236 |
. . . . . 6
| |
| 12 | 11 | oveq1d 5940 |
. . . . 5
|
| 13 | oveq1 5932 |
. . . . 5
| |
| 14 | 12, 13 | eqeq12d 2211 |
. . . 4
|
| 15 | negeq 8236 |
. . . . . 6
| |
| 16 | 15 | oveq1d 5940 |
. . . . 5
|
| 17 | oveq1 5932 |
. . . . 5
| |
| 18 | 16, 17 | eqeq12d 2211 |
. . . 4
|
| 19 | negeq 8236 |
. . . . . 6
| |
| 20 | 19 | oveq1d 5940 |
. . . . 5
|
| 21 | oveq1 5932 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2211 |
. . . 4
|
| 23 | mulgneg2.b |
. . . . . . 7
| |
| 24 | eqid 2196 |
. . . . . . 7
| |
| 25 | mulgneg2.m |
. . . . . . 7
| |
| 26 | 23, 24, 25 | mulg0 13331 |
. . . . . 6
|
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | mulgneg2.i |
. . . . . . 7
| |
| 29 | 23, 28 | grpinvcl 13250 |
. . . . . 6
|
| 30 | 23, 24, 25 | mulg0 13331 |
. . . . . 6
|
| 31 | 29, 30 | syl 14 |
. . . . 5
|
| 32 | 27, 31 | eqtr4d 2232 |
. . . 4
|
| 33 | oveq1 5932 |
. . . . . 6
| |
| 34 | nn0cn 9276 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | ax-1cn 7989 |
. . . . . . . . . 10
| |
| 37 | negdi 8300 |
. . . . . . . . . 10
| |
| 38 | 35, 36, 37 | sylancl 413 |
. . . . . . . . 9
|
| 39 | 38 | oveq1d 5940 |
. . . . . . . 8
|
| 40 | simpll 527 |
. . . . . . . . 9
| |
| 41 | nn0negz 9377 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
|
| 43 | 1z 9369 |
. . . . . . . . . 10
| |
| 44 | znegcl 9374 |
. . . . . . . . . 10
| |
| 45 | 43, 44 | mp1i 10 |
. . . . . . . . 9
|
| 46 | simplr 528 |
. . . . . . . . 9
| |
| 47 | eqid 2196 |
. . . . . . . . . 10
| |
| 48 | 23, 25, 47 | mulgdir 13360 |
. . . . . . . . 9
|
| 49 | 40, 42, 45, 46, 48 | syl13anc 1251 |
. . . . . . . 8
|
| 50 | 23, 25, 28 | mulgm1 13348 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 51 | oveq2d 5941 |
. . . . . . . 8
|
| 53 | 39, 49, 52 | 3eqtrd 2233 |
. . . . . . 7
|
| 54 | grpmnd 13209 |
. . . . . . . . 9
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . 8
|
| 56 | simpr 110 |
. . . . . . . 8
| |
| 57 | 29 | adantr 276 |
. . . . . . . 8
|
| 58 | 23, 25, 47 | mulgnn0p1 13339 |
. . . . . . . 8
|
| 59 | 55, 56, 57, 58 | syl3anc 1249 |
. . . . . . 7
|
| 60 | 53, 59 | eqeq12d 2211 |
. . . . . 6
|
| 61 | 33, 60 | imbitrrid 156 |
. . . . 5
|
| 62 | 61 | ex 115 |
. . . 4
|
| 63 | fveq2 5561 |
. . . . . 6
| |
| 64 | simpll 527 |
. . . . . . . 8
| |
| 65 | nnnegz 9346 |
. . . . . . . . 9
| |
| 66 | 65 | adantl 277 |
. . . . . . . 8
|
| 67 | simplr 528 |
. . . . . . . 8
| |
| 68 | 23, 25, 28 | mulgneg 13346 |
. . . . . . . 8
|
| 69 | 64, 66, 67, 68 | syl3anc 1249 |
. . . . . . 7
|
| 70 | id 19 |
. . . . . . . 8
| |
| 71 | 23, 25, 28 | mulgnegnn 13338 |
. . . . . . . 8
|
| 72 | 70, 29, 71 | syl2anr 290 |
. . . . . . 7
|
| 73 | 69, 72 | eqeq12d 2211 |
. . . . . 6
|
| 74 | 63, 73 | imbitrrid 156 |
. . . . 5
|
| 75 | 74 | ex 115 |
. . . 4
|
| 76 | 6, 10, 14, 18, 22, 32, 62, 75 | zindd 9461 |
. . 3
|
| 77 | 76 | 3impia 1202 |
. 2
|
| 78 | 77 | 3com23 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: mulgass 13365 |
| Copyright terms: Public domain | W3C validator |