ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg2 Unicode version

Theorem mulgneg2 13362
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b  |-  B  =  ( Base `  G
)
mulgneg2.m  |-  .x.  =  (.g
`  G )
mulgneg2.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )

Proof of Theorem mulgneg2
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 8236 . . . . . . 7  |-  ( x  =  0  ->  -u x  =  -u 0 )
2 neg0 8289 . . . . . . 7  |-  -u 0  =  0
31, 2eqtrdi 2245 . . . . . 6  |-  ( x  =  0  ->  -u x  =  0 )
43oveq1d 5940 . . . . 5  |-  ( x  =  0  ->  ( -u x  .x.  X )  =  ( 0  .x. 
X ) )
5 oveq1 5932 . . . . 5  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
64, 5eqeq12d 2211 . . . 4  |-  ( x  =  0  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( 0 
.x.  X )  =  ( 0  .x.  (
I `  X )
) ) )
7 negeq 8236 . . . . . 6  |-  ( x  =  n  ->  -u x  =  -u n )
87oveq1d 5940 . . . . 5  |-  ( x  =  n  ->  ( -u x  .x.  X )  =  ( -u n  .x.  X ) )
9 oveq1 5932 . . . . 5  |-  ( x  =  n  ->  (
x  .x.  ( I `  X ) )  =  ( n  .x.  (
I `  X )
) )
108, 9eqeq12d 2211 . . . 4  |-  ( x  =  n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) ) ) )
11 negeq 8236 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  -u x  =  -u ( n  + 
1 ) )
1211oveq1d 5940 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  ( -u x  .x.  X )  =  ( -u (
n  +  1 ) 
.x.  X ) )
13 oveq1 5932 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) )
1412, 13eqeq12d 2211 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
15 negeq 8236 . . . . . 6  |-  ( x  =  -u n  ->  -u x  =  -u -u n )
1615oveq1d 5940 . . . . 5  |-  ( x  =  -u n  ->  ( -u x  .x.  X )  =  ( -u -u n  .x.  X ) )
17 oveq1 5932 . . . . 5  |-  ( x  =  -u n  ->  (
x  .x.  ( I `  X ) )  =  ( -u n  .x.  ( I `  X
) ) )
1816, 17eqeq12d 2211 . . . 4  |-  ( x  =  -u n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
19 negeq 8236 . . . . . 6  |-  ( x  =  N  ->  -u x  =  -u N )
2019oveq1d 5940 . . . . 5  |-  ( x  =  N  ->  ( -u x  .x.  X )  =  ( -u N  .x.  X ) )
21 oveq1 5932 . . . . 5  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
2220, 21eqeq12d 2211 . . . 4  |-  ( x  =  N  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
23 mulgneg2.b . . . . . . 7  |-  B  =  ( Base `  G
)
24 eqid 2196 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
25 mulgneg2.m . . . . . . 7  |-  .x.  =  (.g
`  G )
2623, 24, 25mulg0 13331 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
28 mulgneg2.i . . . . . . 7  |-  I  =  ( invg `  G )
2923, 28grpinvcl 13250 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
3023, 24, 25mulg0 13331 . . . . . 6  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
3129, 30syl 14 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
3227, 31eqtr4d 2232 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0 
.x.  ( I `  X ) ) )
33 oveq1 5932 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
34 nn0cn 9276 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  CC )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  CC )
36 ax-1cn 7989 . . . . . . . . . 10  |-  1  e.  CC
37 negdi 8300 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  1  e.  CC )  -> 
-u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3835, 36, 37sylancl 413 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3938oveq1d 5940 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  +  -u 1 )  .x.  X ) )
40 simpll 527 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Grp )
41 nn0negz 9377 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  -u n  e.  ZZ )
4241adantl 277 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u n  e.  ZZ )
43 1z 9369 . . . . . . . . . 10  |-  1  e.  ZZ
44 znegcl 9374 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
4543, 44mp1i 10 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u 1  e.  ZZ )
46 simplr 528 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  X  e.  B
)
47 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4823, 25, 47mulgdir 13360 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( -u n  e.  ZZ  /\  -u 1  e.  ZZ  /\  X  e.  B ) )  ->  ( ( -u n  +  -u 1
)  .x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) ) )
4940, 42, 45, 46, 48syl13anc 1251 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  +  -u 1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u
1  .x.  X )
) )
5023, 25, 28mulgm1 13348 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( -u 1  .x. 
X )  =  ( I `  X ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u 1  .x.  X )  =  ( I `  X ) )
5251oveq2d 5941 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
5339, 49, 523eqtrd 2233 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
54 grpmnd 13209 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
5554ad2antrr 488 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Mnd )
56 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
5729adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( I `  X )  e.  B
)
5823, 25, 47mulgnn0p1 13339 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  n  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( n  +  1 )  .x.  ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
5955, 56, 57, 58syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( n  +  1 )  .x.  ( I `  X
) )  =  ( ( n  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) ) )
6053, 59eqeq12d 2211 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u ( n  +  1
)  .x.  X )  =  ( ( n  +  1 )  .x.  ( I `  X
) )  <->  ( ( -u n  .x.  X ) ( +g  `  G
) ( I `  X ) )  =  ( ( n  .x.  ( I `  X
) ) ( +g  `  G ) ( I `
 X ) ) ) )
6133, 60imbitrrid 156 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
6261ex 115 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN0  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) ) )
63 fveq2 5561 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( I `  ( -u n  .x.  X ) )  =  ( I `
 ( n  .x.  ( I `  X
) ) ) )
64 simpll 527 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  G  e.  Grp )
65 nnnegz 9346 . . . . . . . . 9  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
6665adantl 277 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  -u n  e.  ZZ )
67 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  X  e.  B
)
6823, 25, 28mulgneg 13346 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u n  e.  ZZ  /\  X  e.  B )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
6964, 66, 67, 68syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
70 id 19 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN )
7123, 25, 28mulgnegnn 13338 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( I `  X
)  e.  B )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7270, 29, 71syl2anr 290 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7369, 72eqeq12d 2211 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u -u n  .x.  X )  =  ( -u n  .x.  ( I `  X
) )  <->  ( I `  ( -u n  .x.  X ) )  =  ( I `  (
n  .x.  ( I `  X ) ) ) ) )
7463, 73imbitrrid 156 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
7574ex 115 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) ) )
766, 10, 14, 18, 22, 32, 62, 75zindd 9461 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
77763impia 1202 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  N  e.  ZZ )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) )
78773com23 1211 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899   -ucneg 8215   NNcn 9007   NN0cn0 9266   ZZcz 9343   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118   Grpcgrp 13202   invgcminusg 13203  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326
This theorem is referenced by:  mulgass  13365
  Copyright terms: Public domain W3C validator