| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgneg2 | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| mulgneg2.b | 
 | 
| mulgneg2.m | 
 | 
| mulgneg2.i | 
 | 
| Ref | Expression | 
|---|---|
| mulgneg2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negeq 8219 | 
. . . . . . 7
 | |
| 2 | neg0 8272 | 
. . . . . . 7
 | |
| 3 | 1, 2 | eqtrdi 2245 | 
. . . . . 6
 | 
| 4 | 3 | oveq1d 5937 | 
. . . . 5
 | 
| 5 | oveq1 5929 | 
. . . . 5
 | |
| 6 | 4, 5 | eqeq12d 2211 | 
. . . 4
 | 
| 7 | negeq 8219 | 
. . . . . 6
 | |
| 8 | 7 | oveq1d 5937 | 
. . . . 5
 | 
| 9 | oveq1 5929 | 
. . . . 5
 | |
| 10 | 8, 9 | eqeq12d 2211 | 
. . . 4
 | 
| 11 | negeq 8219 | 
. . . . . 6
 | |
| 12 | 11 | oveq1d 5937 | 
. . . . 5
 | 
| 13 | oveq1 5929 | 
. . . . 5
 | |
| 14 | 12, 13 | eqeq12d 2211 | 
. . . 4
 | 
| 15 | negeq 8219 | 
. . . . . 6
 | |
| 16 | 15 | oveq1d 5937 | 
. . . . 5
 | 
| 17 | oveq1 5929 | 
. . . . 5
 | |
| 18 | 16, 17 | eqeq12d 2211 | 
. . . 4
 | 
| 19 | negeq 8219 | 
. . . . . 6
 | |
| 20 | 19 | oveq1d 5937 | 
. . . . 5
 | 
| 21 | oveq1 5929 | 
. . . . 5
 | |
| 22 | 20, 21 | eqeq12d 2211 | 
. . . 4
 | 
| 23 | mulgneg2.b | 
. . . . . . 7
 | |
| 24 | eqid 2196 | 
. . . . . . 7
 | |
| 25 | mulgneg2.m | 
. . . . . . 7
 | |
| 26 | 23, 24, 25 | mulg0 13255 | 
. . . . . 6
 | 
| 27 | 26 | adantl 277 | 
. . . . 5
 | 
| 28 | mulgneg2.i | 
. . . . . . 7
 | |
| 29 | 23, 28 | grpinvcl 13180 | 
. . . . . 6
 | 
| 30 | 23, 24, 25 | mulg0 13255 | 
. . . . . 6
 | 
| 31 | 29, 30 | syl 14 | 
. . . . 5
 | 
| 32 | 27, 31 | eqtr4d 2232 | 
. . . 4
 | 
| 33 | oveq1 5929 | 
. . . . . 6
 | |
| 34 | nn0cn 9259 | 
. . . . . . . . . . 11
 | |
| 35 | 34 | adantl 277 | 
. . . . . . . . . 10
 | 
| 36 | ax-1cn 7972 | 
. . . . . . . . . 10
 | |
| 37 | negdi 8283 | 
. . . . . . . . . 10
 | |
| 38 | 35, 36, 37 | sylancl 413 | 
. . . . . . . . 9
 | 
| 39 | 38 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 40 | simpll 527 | 
. . . . . . . . 9
 | |
| 41 | nn0negz 9360 | 
. . . . . . . . . 10
 | |
| 42 | 41 | adantl 277 | 
. . . . . . . . 9
 | 
| 43 | 1z 9352 | 
. . . . . . . . . 10
 | |
| 44 | znegcl 9357 | 
. . . . . . . . . 10
 | |
| 45 | 43, 44 | mp1i 10 | 
. . . . . . . . 9
 | 
| 46 | simplr 528 | 
. . . . . . . . 9
 | |
| 47 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 48 | 23, 25, 47 | mulgdir 13284 | 
. . . . . . . . 9
 | 
| 49 | 40, 42, 45, 46, 48 | syl13anc 1251 | 
. . . . . . . 8
 | 
| 50 | 23, 25, 28 | mulgm1 13272 | 
. . . . . . . . . 10
 | 
| 51 | 50 | adantr 276 | 
. . . . . . . . 9
 | 
| 52 | 51 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 53 | 39, 49, 52 | 3eqtrd 2233 | 
. . . . . . 7
 | 
| 54 | grpmnd 13139 | 
. . . . . . . . 9
 | |
| 55 | 54 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 56 | simpr 110 | 
. . . . . . . 8
 | |
| 57 | 29 | adantr 276 | 
. . . . . . . 8
 | 
| 58 | 23, 25, 47 | mulgnn0p1 13263 | 
. . . . . . . 8
 | 
| 59 | 55, 56, 57, 58 | syl3anc 1249 | 
. . . . . . 7
 | 
| 60 | 53, 59 | eqeq12d 2211 | 
. . . . . 6
 | 
| 61 | 33, 60 | imbitrrid 156 | 
. . . . 5
 | 
| 62 | 61 | ex 115 | 
. . . 4
 | 
| 63 | fveq2 5558 | 
. . . . . 6
 | |
| 64 | simpll 527 | 
. . . . . . . 8
 | |
| 65 | nnnegz 9329 | 
. . . . . . . . 9
 | |
| 66 | 65 | adantl 277 | 
. . . . . . . 8
 | 
| 67 | simplr 528 | 
. . . . . . . 8
 | |
| 68 | 23, 25, 28 | mulgneg 13270 | 
. . . . . . . 8
 | 
| 69 | 64, 66, 67, 68 | syl3anc 1249 | 
. . . . . . 7
 | 
| 70 | id 19 | 
. . . . . . . 8
 | |
| 71 | 23, 25, 28 | mulgnegnn 13262 | 
. . . . . . . 8
 | 
| 72 | 70, 29, 71 | syl2anr 290 | 
. . . . . . 7
 | 
| 73 | 69, 72 | eqeq12d 2211 | 
. . . . . 6
 | 
| 74 | 63, 73 | imbitrrid 156 | 
. . . . 5
 | 
| 75 | 74 | ex 115 | 
. . . 4
 | 
| 76 | 6, 10, 14, 18, 22, 32, 62, 75 | zindd 9444 | 
. . 3
 | 
| 77 | 76 | 3impia 1202 | 
. 2
 | 
| 78 | 77 | 3com23 1211 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mulg 13250 | 
| This theorem is referenced by: mulgass 13289 | 
| Copyright terms: Public domain | W3C validator |