ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg2 Unicode version

Theorem mulgneg2 13607
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b  |-  B  =  ( Base `  G
)
mulgneg2.m  |-  .x.  =  (.g
`  G )
mulgneg2.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )

Proof of Theorem mulgneg2
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 8300 . . . . . . 7  |-  ( x  =  0  ->  -u x  =  -u 0 )
2 neg0 8353 . . . . . . 7  |-  -u 0  =  0
31, 2eqtrdi 2256 . . . . . 6  |-  ( x  =  0  ->  -u x  =  0 )
43oveq1d 5982 . . . . 5  |-  ( x  =  0  ->  ( -u x  .x.  X )  =  ( 0  .x. 
X ) )
5 oveq1 5974 . . . . 5  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
64, 5eqeq12d 2222 . . . 4  |-  ( x  =  0  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( 0 
.x.  X )  =  ( 0  .x.  (
I `  X )
) ) )
7 negeq 8300 . . . . . 6  |-  ( x  =  n  ->  -u x  =  -u n )
87oveq1d 5982 . . . . 5  |-  ( x  =  n  ->  ( -u x  .x.  X )  =  ( -u n  .x.  X ) )
9 oveq1 5974 . . . . 5  |-  ( x  =  n  ->  (
x  .x.  ( I `  X ) )  =  ( n  .x.  (
I `  X )
) )
108, 9eqeq12d 2222 . . . 4  |-  ( x  =  n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) ) ) )
11 negeq 8300 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  -u x  =  -u ( n  + 
1 ) )
1211oveq1d 5982 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  ( -u x  .x.  X )  =  ( -u (
n  +  1 ) 
.x.  X ) )
13 oveq1 5974 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) )
1412, 13eqeq12d 2222 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
15 negeq 8300 . . . . . 6  |-  ( x  =  -u n  ->  -u x  =  -u -u n )
1615oveq1d 5982 . . . . 5  |-  ( x  =  -u n  ->  ( -u x  .x.  X )  =  ( -u -u n  .x.  X ) )
17 oveq1 5974 . . . . 5  |-  ( x  =  -u n  ->  (
x  .x.  ( I `  X ) )  =  ( -u n  .x.  ( I `  X
) ) )
1816, 17eqeq12d 2222 . . . 4  |-  ( x  =  -u n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
19 negeq 8300 . . . . . 6  |-  ( x  =  N  ->  -u x  =  -u N )
2019oveq1d 5982 . . . . 5  |-  ( x  =  N  ->  ( -u x  .x.  X )  =  ( -u N  .x.  X ) )
21 oveq1 5974 . . . . 5  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
2220, 21eqeq12d 2222 . . . 4  |-  ( x  =  N  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
23 mulgneg2.b . . . . . . 7  |-  B  =  ( Base `  G
)
24 eqid 2207 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
25 mulgneg2.m . . . . . . 7  |-  .x.  =  (.g
`  G )
2623, 24, 25mulg0 13576 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
28 mulgneg2.i . . . . . . 7  |-  I  =  ( invg `  G )
2923, 28grpinvcl 13495 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
3023, 24, 25mulg0 13576 . . . . . 6  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
3129, 30syl 14 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
3227, 31eqtr4d 2243 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0 
.x.  ( I `  X ) ) )
33 oveq1 5974 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
34 nn0cn 9340 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  CC )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  CC )
36 ax-1cn 8053 . . . . . . . . . 10  |-  1  e.  CC
37 negdi 8364 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  1  e.  CC )  -> 
-u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3835, 36, 37sylancl 413 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3938oveq1d 5982 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  +  -u 1 )  .x.  X ) )
40 simpll 527 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Grp )
41 nn0negz 9441 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  -u n  e.  ZZ )
4241adantl 277 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u n  e.  ZZ )
43 1z 9433 . . . . . . . . . 10  |-  1  e.  ZZ
44 znegcl 9438 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
4543, 44mp1i 10 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u 1  e.  ZZ )
46 simplr 528 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  X  e.  B
)
47 eqid 2207 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4823, 25, 47mulgdir 13605 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( -u n  e.  ZZ  /\  -u 1  e.  ZZ  /\  X  e.  B ) )  ->  ( ( -u n  +  -u 1
)  .x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) ) )
4940, 42, 45, 46, 48syl13anc 1252 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  +  -u 1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u
1  .x.  X )
) )
5023, 25, 28mulgm1 13593 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( -u 1  .x. 
X )  =  ( I `  X ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u 1  .x.  X )  =  ( I `  X ) )
5251oveq2d 5983 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
5339, 49, 523eqtrd 2244 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
54 grpmnd 13454 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
5554ad2antrr 488 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Mnd )
56 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
5729adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( I `  X )  e.  B
)
5823, 25, 47mulgnn0p1 13584 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  n  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( n  +  1 )  .x.  ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
5955, 56, 57, 58syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( n  +  1 )  .x.  ( I `  X
) )  =  ( ( n  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) ) )
6053, 59eqeq12d 2222 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u ( n  +  1
)  .x.  X )  =  ( ( n  +  1 )  .x.  ( I `  X
) )  <->  ( ( -u n  .x.  X ) ( +g  `  G
) ( I `  X ) )  =  ( ( n  .x.  ( I `  X
) ) ( +g  `  G ) ( I `
 X ) ) ) )
6133, 60imbitrrid 156 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
6261ex 115 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN0  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) ) )
63 fveq2 5599 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( I `  ( -u n  .x.  X ) )  =  ( I `
 ( n  .x.  ( I `  X
) ) ) )
64 simpll 527 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  G  e.  Grp )
65 nnnegz 9410 . . . . . . . . 9  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
6665adantl 277 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  -u n  e.  ZZ )
67 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  X  e.  B
)
6823, 25, 28mulgneg 13591 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u n  e.  ZZ  /\  X  e.  B )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
6964, 66, 67, 68syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
70 id 19 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN )
7123, 25, 28mulgnegnn 13583 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( I `  X
)  e.  B )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7270, 29, 71syl2anr 290 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7369, 72eqeq12d 2222 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u -u n  .x.  X )  =  ( -u n  .x.  ( I `  X
) )  <->  ( I `  ( -u n  .x.  X ) )  =  ( I `  (
n  .x.  ( I `  X ) ) ) ) )
7463, 73imbitrrid 156 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
7574ex 115 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) ) )
766, 10, 14, 18, 22, 32, 62, 75zindd 9526 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
77763impia 1203 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  N  e.  ZZ )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) )
78773com23 1212 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963   -ucneg 8279   NNcn 9071   NN0cn0 9330   ZZcz 9407   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363   Grpcgrp 13447   invgcminusg 13448  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgass  13610
  Copyright terms: Public domain W3C validator