ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvid2 Unicode version

Theorem grpinvid2 12755
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvid2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( Y  .+  X
)  =  .0.  )
)

Proof of Theorem grpinvid2
StepHypRef Expression
1 oveq1 5860 . . . 4  |-  ( ( N `  X )  =  Y  ->  (
( N `  X
)  .+  X )  =  ( Y  .+  X ) )
21adantl 275 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( ( N `
 X )  .+  X )  =  ( Y  .+  X ) )
3 grpinv.b . . . . . 6  |-  B  =  ( Base `  G
)
4 grpinv.p . . . . . 6  |-  .+  =  ( +g  `  G )
5 grpinv.u . . . . . 6  |-  .0.  =  ( 0g `  G )
6 grpinv.n . . . . . 6  |-  N  =  ( invg `  G )
73, 4, 5, 6grplinv 12752 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
873adant3 1012 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
98adantr 274 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( ( N `
 X )  .+  X )  =  .0.  )
102, 9eqtr3d 2205 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( Y  .+  X )  =  .0.  )
113, 6grpinvcl 12751 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
123, 4, 5grplid 12736 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
(  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
1311, 12syldan 280 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
14133adant3 1012 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
1514eqcomd 2176 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X
)  =  (  .0.  .+  ( N `  X
) ) )
1615adantr 274 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( N `  X
)  =  (  .0.  .+  ( N `  X
) ) )
17 oveq1 5860 . . . 4  |-  ( ( Y  .+  X )  =  .0.  ->  (
( Y  .+  X
)  .+  ( N `  X ) )  =  (  .0.  .+  ( N `  X )
) )
1817adantl 275 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  (  .0.  .+  ( N `  X
) ) )
19 simprr 527 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
20 simprl 526 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
2111adantrr 476 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( N `  X )  e.  B )
2219, 20, 213jca 1172 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( Y  e.  B  /\  X  e.  B  /\  ( N `  X )  e.  B ) )
233, 4grpass 12717 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  X  e.  B  /\  ( N `  X
)  e.  B ) )  ->  ( ( Y  .+  X )  .+  ( N `  X ) )  =  ( Y 
.+  ( X  .+  ( N `  X ) ) ) )
2422, 23syldan 280 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( Y  .+  X
)  .+  ( N `  X ) )  =  ( Y  .+  ( X  .+  ( N `  X ) ) ) )
25243impb 1194 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  ( Y 
.+  ( X  .+  ( N `  X ) ) ) )
263, 4, 5, 6grprinv 12753 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
2726oveq2d 5869 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( Y  .+  ( X  .+  ( N `  X ) ) )  =  ( Y  .+  .0.  ) )
28273adant3 1012 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  ( X  .+  ( N `  X ) ) )  =  ( Y  .+  .0.  ) )
293, 4, 5grprid 12737 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  .0.  )  =  Y )
30293adant2 1011 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  .0.  )  =  Y )
3125, 28, 303eqtrd 2207 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  Y )
3231adantr 274 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  Y )
3316, 18, 323eqtr2d 2209 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( N `  X
)  =  Y )
3410, 33impbida 591 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( Y  .+  X
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   Grpcgrp 12708   invgcminusg 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711  df-minusg 12712
This theorem is referenced by:  grpinvcnv  12767
  Copyright terms: Public domain W3C validator