ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvid2 Unicode version

Theorem grpinvid2 13125
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvid2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( Y  .+  X
)  =  .0.  )
)

Proof of Theorem grpinvid2
StepHypRef Expression
1 oveq1 5925 . . . 4  |-  ( ( N `  X )  =  Y  ->  (
( N `  X
)  .+  X )  =  ( Y  .+  X ) )
21adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( ( N `
 X )  .+  X )  =  ( Y  .+  X ) )
3 grpinv.b . . . . . 6  |-  B  =  ( Base `  G
)
4 grpinv.p . . . . . 6  |-  .+  =  ( +g  `  G )
5 grpinv.u . . . . . 6  |-  .0.  =  ( 0g `  G )
6 grpinv.n . . . . . 6  |-  N  =  ( invg `  G )
73, 4, 5, 6grplinv 13122 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
873adant3 1019 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
98adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( ( N `
 X )  .+  X )  =  .0.  )
102, 9eqtr3d 2228 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( Y  .+  X )  =  .0.  )
113, 6grpinvcl 13120 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
123, 4, 5grplid 13103 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
(  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
1311, 12syldan 282 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
14133adant3 1019 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  ( N `  X )
)  =  ( N `
 X ) )
1514eqcomd 2199 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X
)  =  (  .0.  .+  ( N `  X
) ) )
1615adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( N `  X
)  =  (  .0.  .+  ( N `  X
) ) )
17 oveq1 5925 . . . 4  |-  ( ( Y  .+  X )  =  .0.  ->  (
( Y  .+  X
)  .+  ( N `  X ) )  =  (  .0.  .+  ( N `  X )
) )
1817adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  (  .0.  .+  ( N `  X
) ) )
19 simprr 531 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
20 simprl 529 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
2111adantrr 479 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( N `  X )  e.  B )
2219, 20, 213jca 1179 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( Y  e.  B  /\  X  e.  B  /\  ( N `  X )  e.  B ) )
233, 4grpass 13081 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  X  e.  B  /\  ( N `  X
)  e.  B ) )  ->  ( ( Y  .+  X )  .+  ( N `  X ) )  =  ( Y 
.+  ( X  .+  ( N `  X ) ) ) )
2422, 23syldan 282 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( Y  .+  X
)  .+  ( N `  X ) )  =  ( Y  .+  ( X  .+  ( N `  X ) ) ) )
25243impb 1201 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  ( Y 
.+  ( X  .+  ( N `  X ) ) ) )
263, 4, 5, 6grprinv 13123 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
2726oveq2d 5934 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( Y  .+  ( X  .+  ( N `  X ) ) )  =  ( Y  .+  .0.  ) )
28273adant3 1019 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  ( X  .+  ( N `  X ) ) )  =  ( Y  .+  .0.  ) )
293, 4, 5grprid 13104 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  .0.  )  =  Y )
30293adant2 1018 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  .0.  )  =  Y )
3125, 28, 303eqtrd 2230 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  Y )
3231adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( ( Y  .+  X )  .+  ( N `  X )
)  =  Y )
3316, 18, 323eqtr2d 2232 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  .+  X
)  =  .0.  )  ->  ( N `  X
)  =  Y )
3410, 33impbida 596 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( Y  .+  X
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by:  grpinvcnv  13140  grpsubeq0  13158  rngmneg2  13444  ringnegr  13548
  Copyright terms: Public domain W3C validator