| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvid2 | Unicode version | ||
| Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| grpinvid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpinv.b |
. . . . . 6
| |
| 4 | grpinv.p |
. . . . . 6
| |
| 5 | grpinv.u |
. . . . . 6
| |
| 6 | grpinv.n |
. . . . . 6
| |
| 7 | 3, 4, 5, 6 | grplinv 13252 |
. . . . 5
|
| 8 | 7 | 3adant3 1019 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 2, 9 | eqtr3d 2231 |
. 2
|
| 11 | 3, 6 | grpinvcl 13250 |
. . . . . . 7
|
| 12 | 3, 4, 5 | grplid 13233 |
. . . . . . 7
|
| 13 | 11, 12 | syldan 282 |
. . . . . 6
|
| 14 | 13 | 3adant3 1019 |
. . . . 5
|
| 15 | 14 | eqcomd 2202 |
. . . 4
|
| 16 | 15 | adantr 276 |
. . 3
|
| 17 | oveq1 5932 |
. . . 4
| |
| 18 | 17 | adantl 277 |
. . 3
|
| 19 | simprr 531 |
. . . . . . . 8
| |
| 20 | simprl 529 |
. . . . . . . 8
| |
| 21 | 11 | adantrr 479 |
. . . . . . . 8
|
| 22 | 19, 20, 21 | 3jca 1179 |
. . . . . . 7
|
| 23 | 3, 4 | grpass 13211 |
. . . . . . 7
|
| 24 | 22, 23 | syldan 282 |
. . . . . 6
|
| 25 | 24 | 3impb 1201 |
. . . . 5
|
| 26 | 3, 4, 5, 6 | grprinv 13253 |
. . . . . . 7
|
| 27 | 26 | oveq2d 5941 |
. . . . . 6
|
| 28 | 27 | 3adant3 1019 |
. . . . 5
|
| 29 | 3, 4, 5 | grprid 13234 |
. . . . . 6
|
| 30 | 29 | 3adant2 1018 |
. . . . 5
|
| 31 | 25, 28, 30 | 3eqtrd 2233 |
. . . 4
|
| 32 | 31 | adantr 276 |
. . 3
|
| 33 | 16, 18, 32 | 3eqtr2d 2235 |
. 2
|
| 34 | 10, 33 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 |
| This theorem is referenced by: grpinvcnv 13270 grpsubeq0 13288 prdsinvgd 13312 rngmneg2 13580 ringnegr 13684 psrneg 14315 |
| Copyright terms: Public domain | W3C validator |