Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvid2 | Unicode version |
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinv.b | |
grpinv.p | |
grpinv.u | |
grpinv.n |
Ref | Expression |
---|---|
grpinvid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | grpinv.b | . . . . . 6 | |
4 | grpinv.p | . . . . . 6 | |
5 | grpinv.u | . . . . . 6 | |
6 | grpinv.n | . . . . . 6 | |
7 | 3, 4, 5, 6 | grplinv 12752 | . . . . 5 |
8 | 7 | 3adant3 1012 | . . . 4 |
9 | 8 | adantr 274 | . . 3 |
10 | 2, 9 | eqtr3d 2205 | . 2 |
11 | 3, 6 | grpinvcl 12751 | . . . . . . 7 |
12 | 3, 4, 5 | grplid 12736 | . . . . . . 7 |
13 | 11, 12 | syldan 280 | . . . . . 6 |
14 | 13 | 3adant3 1012 | . . . . 5 |
15 | 14 | eqcomd 2176 | . . . 4 |
16 | 15 | adantr 274 | . . 3 |
17 | oveq1 5860 | . . . 4 | |
18 | 17 | adantl 275 | . . 3 |
19 | simprr 527 | . . . . . . . 8 | |
20 | simprl 526 | . . . . . . . 8 | |
21 | 11 | adantrr 476 | . . . . . . . 8 |
22 | 19, 20, 21 | 3jca 1172 | . . . . . . 7 |
23 | 3, 4 | grpass 12717 | . . . . . . 7 |
24 | 22, 23 | syldan 280 | . . . . . 6 |
25 | 24 | 3impb 1194 | . . . . 5 |
26 | 3, 4, 5, 6 | grprinv 12753 | . . . . . . 7 |
27 | 26 | oveq2d 5869 | . . . . . 6 |
28 | 27 | 3adant3 1012 | . . . . 5 |
29 | 3, 4, 5 | grprid 12737 | . . . . . 6 |
30 | 29 | 3adant2 1011 | . . . . 5 |
31 | 25, 28, 30 | 3eqtrd 2207 | . . . 4 |
32 | 31 | adantr 274 | . . 3 |
33 | 16, 18, 32 | 3eqtr2d 2209 | . 2 |
34 | 10, 33 | impbida 591 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cgrp 12708 cminusg 12709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 df-minusg 12712 |
This theorem is referenced by: grpinvcnv 12767 |
Copyright terms: Public domain | W3C validator |