| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvid2 | Unicode version | ||
| Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| grpinvid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5974 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpinv.b |
. . . . . 6
| |
| 4 | grpinv.p |
. . . . . 6
| |
| 5 | grpinv.u |
. . . . . 6
| |
| 6 | grpinv.n |
. . . . . 6
| |
| 7 | 3, 4, 5, 6 | grplinv 13497 |
. . . . 5
|
| 8 | 7 | 3adant3 1020 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 2, 9 | eqtr3d 2242 |
. 2
|
| 11 | 3, 6 | grpinvcl 13495 |
. . . . . . 7
|
| 12 | 3, 4, 5 | grplid 13478 |
. . . . . . 7
|
| 13 | 11, 12 | syldan 282 |
. . . . . 6
|
| 14 | 13 | 3adant3 1020 |
. . . . 5
|
| 15 | 14 | eqcomd 2213 |
. . . 4
|
| 16 | 15 | adantr 276 |
. . 3
|
| 17 | oveq1 5974 |
. . . 4
| |
| 18 | 17 | adantl 277 |
. . 3
|
| 19 | simprr 531 |
. . . . . . . 8
| |
| 20 | simprl 529 |
. . . . . . . 8
| |
| 21 | 11 | adantrr 479 |
. . . . . . . 8
|
| 22 | 19, 20, 21 | 3jca 1180 |
. . . . . . 7
|
| 23 | 3, 4 | grpass 13456 |
. . . . . . 7
|
| 24 | 22, 23 | syldan 282 |
. . . . . 6
|
| 25 | 24 | 3impb 1202 |
. . . . 5
|
| 26 | 3, 4, 5, 6 | grprinv 13498 |
. . . . . . 7
|
| 27 | 26 | oveq2d 5983 |
. . . . . 6
|
| 28 | 27 | 3adant3 1020 |
. . . . 5
|
| 29 | 3, 4, 5 | grprid 13479 |
. . . . . 6
|
| 30 | 29 | 3adant2 1019 |
. . . . 5
|
| 31 | 25, 28, 30 | 3eqtrd 2244 |
. . . 4
|
| 32 | 31 | adantr 276 |
. . 3
|
| 33 | 16, 18, 32 | 3eqtr2d 2246 |
. 2
|
| 34 | 10, 33 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 |
| This theorem is referenced by: grpinvcnv 13515 grpsubeq0 13533 prdsinvgd 13557 rngmneg2 13825 ringnegr 13929 psrneg 14564 |
| Copyright terms: Public domain | W3C validator |