Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeocld GIF version

Theorem hmeocld 12495
 Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocld ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 12489 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
21adantr 274 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
3 imacnvcnv 5003 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
4 cnclima 12406 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
53, 4eqeltrrid 2227 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
65ex 114 . . 3 (𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
72, 6syl 14 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
8 hmeocn 12488 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
98adantr 274 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 cnclima 12406 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽))
1110ex 114 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
129, 11syl 14 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
13 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
14 eqid 2139 . . . . . . 7 𝐾 = 𝐾
1513, 14hmeof1o 12492 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
16 f1of1 5366 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1715, 16syl 14 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
18 f1imacnv 5384 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1917, 18sylan 281 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
2019eleq1d 2208 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
2112, 20sylibd 148 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽)))
227, 21impbid 128 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   ⊆ wss 3071  ∪ cuni 3736  ◡ccnv 4538   “ cima 4542  –1-1→wf1 5120  –1-1-onto→wf1o 5122  ‘cfv 5123  (class class class)co 5774  Clsdccld 12275   Cn ccn 12368  Homeochmeo 12483 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12179  df-topon 12192  df-cld 12278  df-cn 12371  df-hmeo 12484 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator