ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumm1 Unicode version

Theorem fsumm1 11357
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fsumm1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9475 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
4 fzsn 10001 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
53, 4syl 14 . . . . 5  |-  ( ph  ->  ( N ... N
)  =  { N } )
65ineq2d 3323 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  ( ( M ... ( N  - 
1 ) )  i^i 
{ N } ) )
73zred 9313 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87ltm1d 8827 . . . . 5  |-  ( ph  ->  ( N  -  1 )  <  N )
9 fzdisj 9987 . . . . 5  |-  ( ( N  -  1 )  <  N  ->  (
( M ... ( N  -  1 ) )  i^i  ( N ... N ) )  =  (/) )
108, 9syl 14 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  (/) )
116, 10eqtr3d 2200 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9471 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
131, 12syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9229 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . . 7  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9314 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
17 ax-1cn 7846 . . . . . . . . . 10  |-  1  e.  CC
18 npcan 8107 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
1916, 17, 18sylancl 410 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
2019fveq2d 5490 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
211, 20eleqtrrd 2246 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
22 eluzp1m1 9489 . . . . . . 7  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2315, 21, 22syl2anc 409 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
24 fzsuc2 10014 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2513, 23, 24syl2anc 409 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
263zcnd 9314 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
27 npcan 8107 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2826, 17, 27sylancl 410 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2928oveq2d 5858 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
3025, 29eqtr3d 2200 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( M ... N
) )
3128sneqd 3589 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
3231uneq2d 3276 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
3330, 32eqtr3d 2200 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
3413, 3fzfigd 10366 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
35 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3611, 33, 34, 35fsumsplit 11348 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A ) )
37 fsumm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
3837eleq1d 2235 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
3935ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
40 eluzfz2 9967 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
411, 40syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4238, 39, 41rspcdva 2835 . . . 4  |-  ( ph  ->  B  e.  CC )
4337sumsn 11352 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  sum_ k  e.  { N } A  =  B )
441, 42, 43syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { N } A  =  B )
4544oveq2d 5858 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
4636, 45eqtrd 2198 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    < clt 7933    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  fzosump1  11358  fsump1  11361  telfsumo  11407  fsumparts  11411  binom1dif  11428
  Copyright terms: Public domain W3C validator