ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumm1 Unicode version

Theorem fsumm1 10810
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fsumm1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9028 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
4 fzsn 9480 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
53, 4syl 14 . . . . 5  |-  ( ph  ->  ( N ... N
)  =  { N } )
65ineq2d 3201 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  ( ( M ... ( N  - 
1 ) )  i^i 
{ N } ) )
73zred 8868 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87ltm1d 8393 . . . . 5  |-  ( ph  ->  ( N  -  1 )  <  N )
9 fzdisj 9466 . . . . 5  |-  ( ( N  -  1 )  <  N  ->  (
( M ... ( N  -  1 ) )  i^i  ( N ... N ) )  =  (/) )
108, 9syl 14 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  (/) )
116, 10eqtr3d 2122 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9024 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
131, 12syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 8788 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . . 7  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 8869 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
17 ax-1cn 7438 . . . . . . . . . 10  |-  1  e.  CC
18 npcan 7691 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
1916, 17, 18sylancl 404 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
2019fveq2d 5309 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
211, 20eleqtrrd 2167 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
22 eluzp1m1 9042 . . . . . . 7  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2315, 21, 22syl2anc 403 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
24 fzsuc2 9493 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2513, 23, 24syl2anc 403 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
263zcnd 8869 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
27 npcan 7691 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2826, 17, 27sylancl 404 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2928oveq2d 5668 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
3025, 29eqtr3d 2122 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( M ... N
) )
3128sneqd 3459 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
3231uneq2d 3154 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
3330, 32eqtr3d 2122 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
3413, 3fzfigd 9838 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
35 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3611, 33, 34, 35fsumsplit 10801 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A ) )
37 fsumm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
3837eleq1d 2156 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
3935ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
40 eluzfz2 9446 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
411, 40syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4238, 39, 41rspcdva 2727 . . . 4  |-  ( ph  ->  B  e.  CC )
4337sumsn 10805 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  sum_ k  e.  { N } A  =  B )
441, 42, 43syl2anc 403 . . 3  |-  ( ph  -> 
sum_ k  e.  { N } A  =  B )
4544oveq2d 5668 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
4636, 45eqtrd 2120 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    u. cun 2997    i^i cin 2998   (/)c0 3286   {csn 3446   class class class wbr 3845   ` cfv 5015  (class class class)co 5652   CCcc 7348   1c1 7351    + caddc 7353    < clt 7522    - cmin 7653   ZZcz 8750   ZZ>=cuz 9019   ...cfz 9424   sum_csu 10742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6292  df-en 6458  df-dom 6459  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-ihash 10184  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667  df-isum 10743
This theorem is referenced by:  fzosump1  10811  fsump1  10814  telfsumo  10860  fsumparts  10864  binom1dif  10881
  Copyright terms: Public domain W3C validator