ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumm1 Unicode version

Theorem fsumm1 11290
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fsumm1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9427 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
4 fzsn 9946 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
53, 4syl 14 . . . . 5  |-  ( ph  ->  ( N ... N
)  =  { N } )
65ineq2d 3304 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  ( ( M ... ( N  - 
1 ) )  i^i 
{ N } ) )
73zred 9265 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87ltm1d 8782 . . . . 5  |-  ( ph  ->  ( N  -  1 )  <  N )
9 fzdisj 9932 . . . . 5  |-  ( ( N  -  1 )  <  N  ->  (
( M ... ( N  -  1 ) )  i^i  ( N ... N ) )  =  (/) )
108, 9syl 14 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  ( N ... N ) )  =  (/) )
116, 10eqtr3d 2189 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9423 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
131, 12syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9184 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . . 7  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9266 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
17 ax-1cn 7804 . . . . . . . . . 10  |-  1  e.  CC
18 npcan 8063 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
1916, 17, 18sylancl 410 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
2019fveq2d 5465 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
211, 20eleqtrrd 2234 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
22 eluzp1m1 9441 . . . . . . 7  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2315, 21, 22syl2anc 409 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
24 fzsuc2 9959 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2513, 23, 24syl2anc 409 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
263zcnd 9266 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
27 npcan 8063 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2826, 17, 27sylancl 410 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2928oveq2d 5830 . . . . 5  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
3025, 29eqtr3d 2189 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( M ... N
) )
3128sneqd 3569 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
3231uneq2d 3257 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
3330, 32eqtr3d 2189 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
3413, 3fzfigd 10308 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
35 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3611, 33, 34, 35fsumsplit 11281 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A ) )
37 fsumm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
3837eleq1d 2223 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
3935ralrimiva 2527 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
40 eluzfz2 9912 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
411, 40syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4238, 39, 41rspcdva 2818 . . . 4  |-  ( ph  ->  B  e.  CC )
4337sumsn 11285 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  sum_ k  e.  { N } A  =  B )
441, 42, 43syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { N } A  =  B )
4544oveq2d 5830 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  { N } A
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
4636, 45eqtrd 2187 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125    u. cun 3096    i^i cin 3097   (/)c0 3390   {csn 3556   class class class wbr 3961   ` cfv 5163  (class class class)co 5814   CCcc 7709   1c1 7712    + caddc 7714    < clt 7891    - cmin 8025   ZZcz 9146   ZZ>=cuz 9418   ...cfz 9890   sum_csu 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228
This theorem is referenced by:  fzosump1  11291  fsump1  11294  telfsumo  11340  fsumparts  11344  binom1dif  11361
  Copyright terms: Public domain W3C validator