Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  inffz GIF version

Theorem inffz 16470
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
inffz (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)

Proof of Theorem inffz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
21zred 9577 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ)
3 simprr 531 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
43zred 9577 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ)
52, 4lttri3d 8269 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥)))
6 eluzel2 9735 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7 eluzfz1 10235 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8 elfzle1 10231 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑀𝑧)
98adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑀𝑧)
106zred 9577 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
11 elfzelz 10229 . . . . 5 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ)
1211zred 9577 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ)
13 lenlt 8230 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑀𝑧 ↔ ¬ 𝑧 < 𝑀))
1410, 12, 13syl2an 289 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑀𝑧 ↔ ¬ 𝑧 < 𝑀))
159, 14mpbid 147 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑧 < 𝑀)
165, 6, 7, 15infminti 7202 1 (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  infcinf 7158  cr 8006   < clt 8189  cle 8190  cz 9454  cuz 9730  ...cfz 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-pre-ltirr 8119  ax-pre-apti 8122
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-neg 8328  df-z 9455  df-uz 9731  df-fz 10213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator