![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > inffz | GIF version |
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
Ref | Expression |
---|---|
inffz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 529 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
2 | 1 | zred 9439 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ) |
3 | simprr 531 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
4 | 3 | zred 9439 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ) |
5 | 2, 4 | lttri3d 8134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥))) |
6 | eluzel2 9597 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
7 | eluzfz1 10097 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
8 | elfzle1 10093 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑧) | |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑧) |
10 | 6 | zred 9439 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
11 | elfzelz 10091 | . . . . 5 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ) | |
12 | 11 | zred 9439 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ) |
13 | lenlt 8095 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑀 ≤ 𝑧 ↔ ¬ 𝑧 < 𝑀)) | |
14 | 10, 12, 13 | syl2an 289 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝑧 ↔ ¬ 𝑧 < 𝑀)) |
15 | 9, 14 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑧 < 𝑀) |
16 | 5, 6, 7, 15 | infminti 7086 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 infcinf 7042 ℝcr 7871 < clt 8054 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-apti 7987 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-neg 8193 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |