Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzle1 | Unicode version |
Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9977 | . 2 | |
2 | eluzle 9499 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 class class class wbr 3989 cfv 5198 (class class class)co 5853 cle 7955 cuz 9487 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: elfz1eq 9991 fzdisj 10008 elfznn 10010 fznatpl1 10032 fznn0sub2 10084 fz0fzdiffz0 10086 difelfznle 10091 iseqf1olemqcl 10442 iseqf1olemnab 10444 iseqf1olemab 10445 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 seq3f1olemqsum 10456 bcval4 10686 seq3coll 10777 fsum0diaglem 11403 cvgratnnlemabsle 11490 cvgratnnlemrate 11493 mertenslemi1 11498 fprodntrivap 11547 prmdc 12084 hashdvds 12175 prmdiveq 12190 lgsdilem2 13731 inffz 14101 |
Copyright terms: Public domain | W3C validator |