ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzle1 Unicode version

Theorem elfzle1 10093
Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzle1  |-  ( K  e.  ( M ... N )  ->  M  <_  K )

Proof of Theorem elfzle1
StepHypRef Expression
1 elfzuz 10087 . 2  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
2 eluzle 9604 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  <_  K )
31, 2syl 14 1  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    <_ cle 8055   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-neg 8193  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  elfz1eq  10101  fzdisj  10118  elfznn  10120  fznatpl1  10142  fznn0sub2  10194  fz0fzdiffz0  10196  difelfznle  10201  iseqf1olemqcl  10570  iseqf1olemnab  10572  iseqf1olemab  10573  seq3f1olemqsumkj  10582  seq3f1olemqsumk  10583  seq3f1olemqsum  10584  seqf1oglem1  10590  seqf1oglem2  10591  seqfeq4g  10602  bcval4  10823  seq3coll  10913  fsum0diaglem  11583  cvgratnnlemabsle  11670  cvgratnnlemrate  11673  mertenslemi1  11678  fprodntrivap  11727  prmdc  12268  hashdvds  12359  prmdiveq  12374  4sqlem11  12539  4sqlem12  12540  gsumfzfsumlemm  14075  lgsdilem2  15152  lgsquadlem1  15191  inffz  15562
  Copyright terms: Public domain W3C validator