| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle1 | Unicode version | ||
| Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10113 |
. 2
| |
| 2 | eluzle 9630 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8217 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: elfz1eq 10127 fzdisj 10144 elfznn 10146 fznatpl1 10168 fznn0sub2 10220 fz0fzdiffz0 10222 difelfznle 10227 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 seq3f1olemqsumkj 10620 seq3f1olemqsumk 10621 seq3f1olemqsum 10622 seqf1oglem1 10628 seqf1oglem2 10629 seqfeq4g 10640 bcval4 10861 seq3coll 10951 fsum0diaglem 11622 cvgratnnlemabsle 11709 cvgratnnlemrate 11712 mertenslemi1 11717 fprodntrivap 11766 prmdc 12323 hashdvds 12414 prmdiveq 12429 4sqlem11 12595 4sqlem12 12596 gsumfzfsumlemm 14219 lgsdilem2 15361 lgsquadlem1 15402 inffz 15803 |
| Copyright terms: Public domain | W3C validator |