Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzelz | Unicode version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9977 | . 2 | |
2 | eluzelz 9496 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cfv 5198 (class class class)co 5853 cz 9212 cuz 9487 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: elfzelzd 9982 elfz1eq 9991 fzsplit2 10006 fzdisj 10008 elfznn 10010 fznatpl1 10032 fzdifsuc 10037 fzrev2i 10042 fzrev3i 10044 elfzp12 10055 fznuz 10058 fzrevral 10061 fzshftral 10064 fznn0sub2 10084 elfzmlbm 10087 difelfznle 10091 fzosplit 10133 ser3mono 10434 iseqf1olemkle 10440 iseqf1olemklt 10441 iseqf1olemqcl 10442 iseqf1olemnab 10444 iseqf1olemab 10445 iseqf1olemmo 10448 iseqf1olemqk 10450 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 seq3f1olemqsum 10456 seq3f1olemstep 10457 bcval2 10684 bcval4 10686 bccmpl 10688 bcp1nk 10696 bcpasc 10700 bccl2 10702 zfz1isolemiso 10774 seq3coll 10777 seq3shft 10802 sumrbdclem 11340 summodclem2a 11344 fsum0diaglem 11403 fisum0diag 11404 mptfzshft 11405 fsumrev 11406 fsumshft 11407 fsumshftm 11408 fisum0diag2 11410 binomlem 11446 binom11 11449 bcxmas 11452 arisum 11461 geo2sum 11477 cvgratnnlemabsle 11490 cvgratnnlemrate 11493 mertenslemub 11497 mertenslemi1 11498 prodfap0 11508 prodrbdclem 11534 prodmodclem2a 11539 fprodntrivap 11547 fprodm1 11561 fprod1p 11562 fprodfac 11578 fprodeq0 11580 fprodshft 11581 fprodrev 11582 fprod0diagfz 11591 fzm1ndvds 11816 zsupssdc 11909 lcmval 12017 lcmcllem 12021 lcmledvds 12024 prmdc 12084 prmdvdsfz 12093 isprm5lem 12095 phivalfi 12166 hashdvds 12175 phiprmpw 12176 eulerthlemrprm 12183 eulerthlema 12184 prmdiveq 12190 prmdivdiv 12191 modprminv 12203 modprminveq 12204 modprm0 12208 pcfac 12302 lgsval2lem 13705 lgsdilem2 13731 trilpolemlt1 14073 supfz 14100 inffz 14101 |
Copyright terms: Public domain | W3C validator |