![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzelz | Unicode version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 10021 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eluzelz 9537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-neg 8131 df-z 9254 df-uz 9529 df-fz 10009 |
This theorem is referenced by: elfzelzd 10026 elfz1eq 10035 fzsplit2 10050 fzdisj 10052 elfznn 10054 fznatpl1 10076 fzdifsuc 10081 fzrev2i 10086 fzrev3i 10088 elfzp12 10099 fznuz 10102 fzrevral 10105 fzshftral 10108 fznn0sub2 10128 elfzmlbm 10131 difelfznle 10135 fzosplit 10177 ser3mono 10478 iseqf1olemkle 10484 iseqf1olemklt 10485 iseqf1olemqcl 10486 iseqf1olemnab 10488 iseqf1olemab 10489 iseqf1olemmo 10492 iseqf1olemqk 10494 seq3f1olemqsumkj 10498 seq3f1olemqsumk 10499 seq3f1olemqsum 10500 seq3f1olemstep 10501 bcval2 10730 bcval4 10732 bccmpl 10734 bcp1nk 10742 bcpasc 10746 bccl2 10748 zfz1isolemiso 10819 seq3coll 10822 seq3shft 10847 sumrbdclem 11385 summodclem2a 11389 fsum0diaglem 11448 fisum0diag 11449 mptfzshft 11450 fsumrev 11451 fsumshft 11452 fsumshftm 11453 fisum0diag2 11455 binomlem 11491 binom11 11494 bcxmas 11497 arisum 11506 geo2sum 11522 cvgratnnlemabsle 11535 cvgratnnlemrate 11538 mertenslemub 11542 mertenslemi1 11543 prodfap0 11553 prodrbdclem 11579 prodmodclem2a 11584 fprodntrivap 11592 fprodm1 11606 fprod1p 11607 fprodfac 11623 fprodeq0 11625 fprodshft 11626 fprodrev 11627 fprod0diagfz 11636 fzm1ndvds 11862 zsupssdc 11955 lcmval 12063 lcmcllem 12067 lcmledvds 12070 prmdc 12130 prmdvdsfz 12139 isprm5lem 12141 phivalfi 12212 hashdvds 12221 phiprmpw 12222 eulerthlemrprm 12229 eulerthlema 12230 prmdiveq 12236 prmdivdiv 12237 modprminv 12249 modprminveq 12250 modprm0 12254 pcfac 12348 lgsval2lem 14414 lgsdilem2 14440 lgseisenlem1 14453 lgseisenlem2 14454 trilpolemlt1 14792 supfz 14821 inffz 14822 |
Copyright terms: Public domain | W3C validator |