Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3p1 | Unicode version |
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.) |
Ref | Expression |
---|---|
seq3p1.m | |
seq3p1.f | |
seq3p1.pl |
Ref | Expression |
---|---|
seq3p1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3p1.m | . . 3 | |
2 | eluzel2 9467 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | fveq2 5485 | . . . . . 6 | |
5 | 4 | eleq1d 2234 | . . . . 5 |
6 | seq3p1.f | . . . . . 6 | |
7 | 6 | ralrimiva 2538 | . . . . 5 |
8 | uzid 9476 | . . . . . 6 | |
9 | 3, 8 | syl 14 | . . . . 5 |
10 | 5, 7, 9 | rspcdva 2834 | . . . 4 |
11 | ssv 3163 | . . . . 5 | |
12 | 11 | a1i 9 | . . . 4 |
13 | seq3p1.pl | . . . . 5 | |
14 | 6, 13 | iseqovex 10387 | . . . 4 |
15 | iseqvalcbv 10388 | . . . 4 frec frec | |
16 | 3, 15, 6, 13 | seq3val 10389 | . . . 4 frec |
17 | 3, 10, 12, 14, 15, 16 | frecuzrdgsuct 10355 | . . 3 |
18 | 1, 17 | mpdan 418 | . 2 |
19 | eqid 2165 | . . . . 5 | |
20 | 19, 3, 6, 13 | seqf 10392 | . . . 4 |
21 | 20, 1 | ffvelrnd 5620 | . . 3 |
22 | fveq2 5485 | . . . . . 6 | |
23 | 22 | eleq1d 2234 | . . . . 5 |
24 | peano2uz 9517 | . . . . . 6 | |
25 | 1, 24 | syl 14 | . . . . 5 |
26 | 23, 7, 25 | rspcdva 2834 | . . . 4 |
27 | 13, 21, 26 | caovcld 5991 | . . 3 |
28 | fvoveq1 5864 | . . . . 5 | |
29 | 28 | oveq2d 5857 | . . . 4 |
30 | oveq1 5848 | . . . 4 | |
31 | eqid 2165 | . . . 4 | |
32 | 29, 30, 31 | ovmpog 5972 | . . 3 |
33 | 1, 21, 27, 32 | syl3anc 1228 | . 2 |
34 | 18, 33 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2725 wss 3115 cop 3578 cfv 5187 (class class class)co 5841 cmpo 5843 freccfrec 6354 c1 7750 caddc 7752 cz 9187 cuz 9462 cseq 10376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-seqfrec 10377 |
This theorem is referenced by: seq3clss 10398 seq3m1 10399 seq3fveq2 10400 seq3shft2 10404 ser3mono 10409 seq3split 10410 seq3caopr3 10412 seq3id3 10438 seq3id2 10440 seq3homo 10441 seq3z 10442 ser3ge0 10448 exp3vallem 10452 expp1 10458 facp1 10639 seq3coll 10751 resqrexlemfp1 10947 climserle 11282 clim2prod 11476 prodfap0 11482 prodfrecap 11483 ege2le3 11608 efgt1p2 11632 efgt1p 11633 algrp1 11974 pcmpt 12269 nninfdclemp1 12379 |
Copyright terms: Public domain | W3C validator |