ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3p1 Unicode version

Theorem seq3p1 10411
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
Hypotheses
Ref Expression
seq3p1.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3p1.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3p1.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3p1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y

Proof of Theorem seq3p1
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3p1.m . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9485 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 fveq2 5494 . . . . . 6  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
54eleq1d 2239 . . . . 5  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
6 seq3p1.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
76ralrimiva 2543 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
8 uzid 9494 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
93, 8syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
105, 7, 9rspcdva 2839 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3169 . . . . 5  |-  S  C_  _V
1211a1i 9 . . . 4  |-  ( ph  ->  S  C_  _V )
13 seq3p1.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
146, 13iseqovex 10405 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
15 iseqvalcbv 10406 . . . 4  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
163, 15, 6, 13seq3val 10407 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
173, 10, 12, 14, 15, 16frecuzrdgsuct 10373 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 ) )  =  ( N ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
) )
181, 17mpdan 419 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) ) )
19 eqid 2170 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2019, 3, 6, 13seqf 10410 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
2120, 1ffvelrnd 5630 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
22 fveq2 5494 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( F `  x )  =  ( F `  ( N  +  1
) ) )
2322eleq1d 2239 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( N  +  1 ) )  e.  S
) )
24 peano2uz 9535 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
251, 24syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2623, 7, 25rspcdva 2839 . . . 4  |-  ( ph  ->  ( F `  ( N  +  1 ) )  e.  S )
2713, 21, 26caovcld 6004 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  S
)
28 fvoveq1 5874 . . . . 5  |-  ( z  =  N  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2928oveq2d 5867 . . . 4  |-  ( z  =  N  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( N  +  1 ) ) ) )
30 oveq1 5858 . . . 4  |-  ( w  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( w  .+  ( F `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
31 eqid 2170 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3229, 30, 31ovmpog 5985 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (  seq M (  .+  ,  F ) `  N
)  e.  S  /\  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  S
)  ->  ( N
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
)  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
331, 21, 27, 32syl3anc 1233 . 2  |-  ( ph  ->  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  ( F `  ( N  +  1 ) ) ) )
3418, 33eqtrd 2203 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   <.cop 3584   ` cfv 5196  (class class class)co 5851    e. cmpo 5853  freccfrec 6367   1c1 7768    + caddc 7770   ZZcz 9205   ZZ>=cuz 9480    seqcseq 10394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-seqfrec 10395
This theorem is referenced by:  seq3clss  10416  seq3m1  10417  seq3fveq2  10418  seq3shft2  10422  ser3mono  10427  seq3split  10428  seq3caopr3  10430  seq3id3  10456  seq3id2  10458  seq3homo  10459  seq3z  10460  ser3ge0  10466  exp3vallem  10470  expp1  10476  facp1  10657  seq3coll  10770  resqrexlemfp1  10966  climserle  11301  clim2prod  11495  prodfap0  11501  prodfrecap  11502  ege2le3  11627  efgt1p2  11651  efgt1p  11652  algrp1  11993  pcmpt  12288  nninfdclemp1  12398
  Copyright terms: Public domain W3C validator