ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3p1 Unicode version

Theorem seq3p1 10612
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
Hypotheses
Ref Expression
seq3p1.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3p1.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3p1.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3p1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y

Proof of Theorem seq3p1
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3p1.m . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9655 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 fveq2 5578 . . . . . 6  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
54eleq1d 2274 . . . . 5  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
6 seq3p1.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
76ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
8 uzid 9664 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
93, 8syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
105, 7, 9rspcdva 2882 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3215 . . . . 5  |-  S  C_  _V
1211a1i 9 . . . 4  |-  ( ph  ->  S  C_  _V )
13 seq3p1.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
146, 13iseqovex 10605 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
15 iseqvalcbv 10606 . . . 4  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
163, 15, 6, 13seq3val 10607 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
173, 10, 12, 14, 15, 16frecuzrdgsuct 10571 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 ) )  =  ( N ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
) )
181, 17mpdan 421 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) ) )
19 eqid 2205 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2019, 3, 6, 13seqf 10611 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
2120, 1ffvelcdmd 5718 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
22 fveq2 5578 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( F `  x )  =  ( F `  ( N  +  1
) ) )
2322eleq1d 2274 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( N  +  1 ) )  e.  S
) )
24 peano2uz 9706 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
251, 24syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2623, 7, 25rspcdva 2882 . . . 4  |-  ( ph  ->  ( F `  ( N  +  1 ) )  e.  S )
2713, 21, 26caovcld 6102 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  S
)
28 fvoveq1 5969 . . . . 5  |-  ( z  =  N  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2928oveq2d 5962 . . . 4  |-  ( z  =  N  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( N  +  1 ) ) ) )
30 oveq1 5953 . . . 4  |-  ( w  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( w  .+  ( F `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
31 eqid 2205 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3229, 30, 31ovmpog 6082 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (  seq M (  .+  ,  F ) `  N
)  e.  S  /\  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  S
)  ->  ( N
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
)  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
331, 21, 27, 32syl3anc 1250 . 2  |-  ( ph  ->  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  ( F `  ( N  +  1 ) ) ) )
3418, 33eqtrd 2238 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   <.cop 3636   ` cfv 5272  (class class class)co 5946    e. cmpo 5948  freccfrec 6478   1c1 7928    + caddc 7930   ZZcz 9374   ZZ>=cuz 9650    seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  seqp1g  10613  seq3clss  10618  seq3m1  10620  seq3fveq2  10622  seq3shft2  10628  ser3mono  10634  seq3split  10635  seq3caopr3  10638  seq3id3  10671  seq3id2  10673  seq3homo  10674  seq3z  10675  seqfeq4g  10678  ser3ge0  10683  exp3vallem  10687  expp1  10693  facp1  10877  seq3coll  10989  resqrexlemfp1  11353  climserle  11689  clim2prod  11883  prodfap0  11889  prodfrecap  11890  ege2le3  12015  efgt1p2  12039  efgt1p  12040  algrp1  12401  pcmpt  12699  nninfdclemp1  12854  gsumsplit1r  13263  gsumprval  13264  gsumfzz  13360  mulgnnp1  13499
  Copyright terms: Public domain W3C validator