ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqp1cd Unicode version

Theorem seqp1cd 10652
Description: Value of the sequence builder function at a successor. A version of seq3p1 10647 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqp1cd.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqp1cd.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqp1cd.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqp1cd.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
Assertion
Ref Expression
seqp1cd  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Distinct variable groups:    x,  .+ , y    x, C, y    x, D, y    x, F, y   
x, M, y    x, N, y    ph, x, y

Proof of Theorem seqp1cd
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqp1cd.m . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9688 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 seqp1cd.1 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  C )
5 ssv 3223 . . . . 5  |-  C  C_  _V
65a1i 9 . . . 4  |-  ( ph  ->  C  C_  _V )
7 seqp1cd.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
8 seqp1cd.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
97, 8seqovcd 10649 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
10 iseqvalcbv 10641 . . . 4  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  C  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
113, 10, 4, 8, 7seqvalcd 10643 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  C  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
123, 4, 6, 9, 10, 11frecuzrdgsuct 10606 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 ) )  =  ( N ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
) )
131, 12mpdan 421 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) ) )
14 eqid 2207 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
154, 8, 14, 3, 7seqf2 10650 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> C )
1615, 1ffvelcdmd 5739 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
17 fveq2 5599 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( F `  x )  =  ( F `  ( N  +  1
) ) )
1817eleq1d 2276 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( N  +  1 ) )  e.  D
) )
197ralrimiva 2581 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
20 eluzp1p1 9709 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
211, 20syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
2218, 19, 21rspcdva 2889 . . . 4  |-  ( ph  ->  ( F `  ( N  +  1 ) )  e.  D )
238, 16, 22caovcld 6123 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)
24 fvoveq1 5990 . . . . 5  |-  ( z  =  N  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2524oveq2d 5983 . . . 4  |-  ( z  =  N  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( N  +  1 ) ) ) )
26 oveq1 5974 . . . 4  |-  ( w  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( w  .+  ( F `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
27 eqid 2207 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
2825, 26, 27ovmpog 6103 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (  seq M (  .+  ,  F ) `  N
)  e.  C  /\  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)  ->  ( N
( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
)  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
291, 16, 23, 28syl3anc 1250 . 2  |-  ( ph  ->  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  ( F `  ( N  +  1 ) ) ) )
3013, 29eqtrd 2240 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   <.cop 3646   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  freccfrec 6499   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  ennnfonelemp1  12892
  Copyright terms: Public domain W3C validator