ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqp1cd Unicode version

Theorem seqp1cd 10469
Description: Value of the sequence builder function at a successor. A version of seq3p1 10465 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqp1cd.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqp1cd.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqp1cd.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqp1cd.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
Assertion
Ref Expression
seqp1cd  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Distinct variable groups:    x,  .+ , y    x, C, y    x, D, y    x, F, y   
x, M, y    x, N, y    ph, x, y

Proof of Theorem seqp1cd
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqp1cd.m . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9536 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 seqp1cd.1 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  C )
5 ssv 3179 . . . . 5  |-  C  C_  _V
65a1i 9 . . . 4  |-  ( ph  ->  C  C_  _V )
7 seqp1cd.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
8 seqp1cd.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
97, 8seqovcd 10466 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
10 iseqvalcbv 10460 . . . 4  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  C  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
113, 10, 4, 8, 7seqvalcd 10462 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  C  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
123, 4, 6, 9, 10, 11frecuzrdgsuct 10427 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 ) )  =  ( N ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
) )
131, 12mpdan 421 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) ) )
14 eqid 2177 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
154, 8, 14, 3, 7seqf2 10467 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> C )
1615, 1ffvelcdmd 5655 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
17 fveq2 5517 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( F `  x )  =  ( F `  ( N  +  1
) ) )
1817eleq1d 2246 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( N  +  1 ) )  e.  D
) )
197ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
20 eluzp1p1 9556 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
211, 20syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
2218, 19, 21rspcdva 2848 . . . 4  |-  ( ph  ->  ( F `  ( N  +  1 ) )  e.  D )
238, 16, 22caovcld 6031 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)
24 fvoveq1 5901 . . . . 5  |-  ( z  =  N  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2524oveq2d 5894 . . . 4  |-  ( z  =  N  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( N  +  1 ) ) ) )
26 oveq1 5885 . . . 4  |-  ( w  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( w  .+  ( F `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
27 eqid 2177 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
2825, 26, 27ovmpog 6012 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (  seq M (  .+  ,  F ) `  N
)  e.  C  /\  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)  ->  ( N
( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
)  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
291, 16, 23, 28syl3anc 1238 . 2  |-  ( ph  ->  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  ( F `  ( N  +  1 ) ) ) )
3013, 29eqtrd 2210 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   <.cop 3597   ` cfv 5218  (class class class)co 5878    e. cmpo 5880  freccfrec 6394   1c1 7815    + caddc 7817   ZZcz 9256   ZZ>=cuz 9531    seqcseq 10448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-seqfrec 10449
This theorem is referenced by:  ennnfonelemp1  12410
  Copyright terms: Public domain W3C validator