ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqp1cd Unicode version

Theorem seqp1cd 10505
Description: Value of the sequence builder function at a successor. A version of seq3p1 10501 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqp1cd.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqp1cd.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqp1cd.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqp1cd.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
Assertion
Ref Expression
seqp1cd  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Distinct variable groups:    x,  .+ , y    x, C, y    x, D, y    x, F, y   
x, M, y    x, N, y    ph, x, y

Proof of Theorem seqp1cd
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqp1cd.m . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9568 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 seqp1cd.1 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  C )
5 ssv 3192 . . . . 5  |-  C  C_  _V
65a1i 9 . . . 4  |-  ( ph  ->  C  C_  _V )
7 seqp1cd.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
8 seqp1cd.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
97, 8seqovcd 10502 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
10 iseqvalcbv 10496 . . . 4  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  C  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
113, 10, 4, 8, 7seqvalcd 10498 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  C  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
123, 4, 6, 9, 10, 11frecuzrdgsuct 10461 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 ) )  =  ( N ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
) )
131, 12mpdan 421 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) ) )
14 eqid 2189 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
154, 8, 14, 3, 7seqf2 10503 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> C )
1615, 1ffvelcdmd 5676 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
17 fveq2 5537 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( F `  x )  =  ( F `  ( N  +  1
) ) )
1817eleq1d 2258 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( N  +  1 ) )  e.  D
) )
197ralrimiva 2563 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
20 eluzp1p1 9589 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
211, 20syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
2218, 19, 21rspcdva 2861 . . . 4  |-  ( ph  ->  ( F `  ( N  +  1 ) )  e.  D )
238, 16, 22caovcld 6054 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)
24 fvoveq1 5923 . . . . 5  |-  ( z  =  N  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2524oveq2d 5916 . . . 4  |-  ( z  =  N  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( N  +  1 ) ) ) )
26 oveq1 5907 . . . 4  |-  ( w  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( w  .+  ( F `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
27 eqid 2189 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
2825, 26, 27ovmpog 6035 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (  seq M (  .+  ,  F ) `  N
)  e.  C  /\  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  e.  C
)  ->  ( N
( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) (  seq M
(  .+  ,  F
) `  N )
)  =  ( (  seq M (  .+  ,  F ) `  N
)  .+  ( F `  ( N  +  1 ) ) ) )
291, 16, 23, 28syl3anc 1249 . 2  |-  ( ph  ->  ( N ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) (  seq M (  .+  ,  F ) `  N
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  ( F `  ( N  +  1 ) ) ) )
3013, 29eqtrd 2222 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   <.cop 3613   ` cfv 5238  (class class class)co 5900    e. cmpo 5902  freccfrec 6419   1c1 7847    + caddc 7849   ZZcz 9288   ZZ>=cuz 9563    seqcseq 10484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-n0 9212  df-z 9289  df-uz 9564  df-seqfrec 10485
This theorem is referenced by:  ennnfonelemp1  12468
  Copyright terms: Public domain W3C validator