ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismeti Unicode version

Theorem ismeti 14666
Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ismeti.0  |-  X  e. 
_V
ismeti.1  |-  D :
( X  X.  X
) --> RR
ismeti.2  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
ismeti.3  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
Assertion
Ref Expression
ismeti  |-  D  e.  ( Met `  X
)
Distinct variable groups:    x, y, z, D    x, X, y, z

Proof of Theorem ismeti
StepHypRef Expression
1 ismeti.1 . 2  |-  D :
( X  X.  X
) --> RR
2 ismeti.2 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
3 ismeti.3 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
433expa 1205 . . . . 5  |-  ( ( ( x  e.  X  /\  y  e.  X
)  /\  z  e.  X )  ->  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) )
54ralrimiva 2570 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
62, 5jca 306 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
76rgen2a 2551 . 2  |-  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )
8 ismeti.0 . . 3  |-  X  e. 
_V
9 ismet 14664 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
108, 9ax-mp 5 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D :
( X  X.  X
) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
111, 7, 10mpbir2an 944 1  |-  D  e.  ( Met `  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   class class class wbr 4034    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925   RRcr 7895   0cc0 7896    + caddc 7899    <_ cle 8079   Metcmet 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-met 14177
This theorem is referenced by:  0met  14704  cnmet  14850
  Copyright terms: Public domain W3C validator