ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismeti Unicode version

Theorem ismeti 12986
Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ismeti.0  |-  X  e. 
_V
ismeti.1  |-  D :
( X  X.  X
) --> RR
ismeti.2  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
ismeti.3  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
Assertion
Ref Expression
ismeti  |-  D  e.  ( Met `  X
)
Distinct variable groups:    x, y, z, D    x, X, y, z

Proof of Theorem ismeti
StepHypRef Expression
1 ismeti.1 . 2  |-  D :
( X  X.  X
) --> RR
2 ismeti.2 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
3 ismeti.3 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
433expa 1193 . . . . 5  |-  ( ( ( x  e.  X  /\  y  e.  X
)  /\  z  e.  X )  ->  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) )
54ralrimiva 2539 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
62, 5jca 304 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
76rgen2a 2520 . 2  |-  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )
8 ismeti.0 . . 3  |-  X  e. 
_V
9 ismet 12984 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
108, 9ax-mp 5 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D :
( X  X.  X
) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
111, 7, 10mpbir2an 932 1  |-  D  e.  ( Met `  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726   class class class wbr 3982    X. cxp 4602   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756    <_ cle 7934   Metcmet 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-met 12629
This theorem is referenced by:  0met  13024  cnmet  13170
  Copyright terms: Public domain W3C validator