ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm2 Unicode version

Theorem issubm2 13305
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm2.b  |-  B  =  ( Base `  M
)
issubm2.z  |-  .0.  =  ( 0g `  M )
issubm2.h  |-  H  =  ( Ms  S )
Assertion
Ref Expression
issubm2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  H  e.  Mnd ) ) )

Proof of Theorem issubm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubm2.b . . 3  |-  B  =  ( Base `  M
)
2 issubm2.z . . 3  |-  .0.  =  ( 0g `  M )
3 eqid 2205 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
41, 2, 3issubm 13304 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) )
5 issubm2.h . . . . . . 7  |-  H  =  ( Ms  S )
61, 3, 2, 5issubmnd 13274 . . . . . 6  |-  ( ( M  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
76bicomd 141 . . . . 5  |-  ( ( M  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S  <->  H  e.  Mnd ) )
873expb 1207 . . . 4  |-  ( ( M  e.  Mnd  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  ( A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S  <->  H  e.  Mnd ) )
98pm5.32da 452 . . 3  |-  ( M  e.  Mnd  ->  (
( ( S  C_  B  /\  .0.  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
)  <->  ( ( S 
C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd ) ) )
10 df-3an 983 . . 3  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S )  <->  ( ( S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) )
11 df-3an 983 . . 3  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  H  e.  Mnd )  <->  ( ( S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd ) )
129, 10, 113bitr4g 223 . 2  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S )  <->  ( S  C_  B  /\  .0.  e.  S  /\  H  e.  Mnd ) ) )
134, 12bitrd 188 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  H  e.  Mnd ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-submnd 13292
This theorem is referenced by:  submmnd  13312  subsubm  13315  unitsubm  13881  subrgsubm  13996
  Copyright terms: Public domain W3C validator