| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss2 | GIF version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss2.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) |
| ixxss2.3 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| Ref | Expression |
|---|---|
| ixxss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) | |
| 2 | 1 | elixx3g 10038 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵))) |
| 3 | 2 | simplbi 274 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 5 | 4 | simp3d 1014 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*) |
| 6 | 2 | simprbi 275 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 8 | 7 | simpld 112 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤) |
| 9 | 7 | simprd 114 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵) |
| 10 | simplr 528 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶) | |
| 11 | 4 | simp2d 1013 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*) |
| 12 | simpll 527 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*) | |
| 13 | ixxss2.3 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) | |
| 14 | 5, 11, 12, 13 | syl3anc 1250 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| 15 | 9, 10, 14 | mp2and 433 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶) |
| 16 | 4 | simp1d 1012 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*) |
| 17 | ixxssixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 18 | 17 | elixx1 10034 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 19 | 16, 12, 18 | syl2anc 411 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 20 | 5, 8, 15, 19 | mpbir3and 1183 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
| 21 | 20 | ex 115 | . 2 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶))) |
| 22 | 21 | ssrdv 3203 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 ⊆ wss 3170 class class class wbr 4050 (class class class)co 5956 ∈ cmpo 5958 ℝ*cxr 8121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 |
| This theorem is referenced by: iooss2 10054 |
| Copyright terms: Public domain | W3C validator |