![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixxss2 | GIF version |
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ixxssixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss2.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) |
ixxss2.3 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
Ref | Expression |
---|---|
ixxss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxss2.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) | |
2 | 1 | elixx3g 9970 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵))) |
3 | 2 | simplbi 274 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
4 | 3 | adantl 277 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
5 | 4 | simp3d 1013 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*) |
6 | 2 | simprbi 275 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
7 | 6 | adantl 277 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
8 | 7 | simpld 112 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤) |
9 | 7 | simprd 114 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵) |
10 | simplr 528 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶) | |
11 | 4 | simp2d 1012 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*) |
12 | simpll 527 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*) | |
13 | ixxss2.3 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) | |
14 | 5, 11, 12, 13 | syl3anc 1249 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
15 | 9, 10, 14 | mp2and 433 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶) |
16 | 4 | simp1d 1011 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*) |
17 | ixxssixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
18 | 17 | elixx1 9966 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
19 | 16, 12, 18 | syl2anc 411 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
20 | 5, 8, 15, 19 | mpbir3and 1182 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
21 | 20 | ex 115 | . 2 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶))) |
22 | 21 | ssrdv 3186 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {crab 2476 ⊆ wss 3154 class class class wbr 4030 (class class class)co 5919 ∈ cmpo 5921 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 |
This theorem is referenced by: iooss2 9986 |
Copyright terms: Public domain | W3C validator |