![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leadd1dd | Unicode version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltnegd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd1d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
leadd1dd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
leadd1dd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | leidd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltnegd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ltadd1d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | leadd1d 8070 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbid 146 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-addcom 7499 ax-addass 7501 ax-i2m1 7504 ax-0id 7507 ax-rnegex 7508 ax-pre-ltadd 7515 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4457 df-cnv 4459 df-iota 4993 df-fv 5036 df-ov 5669 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 |
This theorem is referenced by: eluzadd 9101 fzoaddel 9657 flqaddz 9758 bernneq3 10130 resqrexlemglsq 10509 isumshft 10938 eirraplem 11118 divalglemnqt 11252 |
Copyright terms: Public domain | W3C validator |