| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > leadd2dd | Unicode version | ||
| Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) | 
| Ref | Expression | 
|---|---|
| leidd.1 | 
 | 
| ltnegd.2 | 
 | 
| ltadd1d.3 | 
 | 
| leadd1dd.4 | 
 | 
| Ref | Expression | 
|---|---|
| leadd2dd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | leadd1dd.4 | 
. 2
 | |
| 2 | leidd.1 | 
. . 3
 | |
| 3 | ltnegd.2 | 
. . 3
 | |
| 4 | ltadd1d.3 | 
. . 3
 | |
| 5 | 2, 3, 4 | leadd2d 8567 | 
. 2
 | 
| 6 | 1, 5 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: difgtsumgt 9395 exbtwnzlemstep 10337 nn0opthlem2d 10813 cvg1nlemres 11150 resqrexlemcalc3 11181 abstri 11269 maxabsle 11369 bdtrilem 11404 bdtri 11405 trilpolemlt1 15685 | 
| Copyright terms: Public domain | W3C validator |