ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzadd Unicode version

Theorem eluzadd 9751
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzadd  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )

Proof of Theorem eluzadd
StepHypRef Expression
1 eluzelz 9731 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 zaddcl 9486 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
31, 2sylan 283 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
4 eluzel2 9727 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  M  e.  ZZ )
65zred 9569 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  M  e.  RR )
71adantr 276 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  N  e.  ZZ )
87zred 9569 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  N  e.  RR )
9 simpr 110 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  K  e.  ZZ )
109zred 9569 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  K  e.  RR )
11 simpl 109 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  N  e.  ( ZZ>= `  M )
)
12 eluz1 9726 . . . . . 6  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
135, 12syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
1411, 13mpbid 147 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  e.  ZZ  /\  M  <_  N ) )
1514simprd 114 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  M  <_  N )
166, 8, 10, 15leadd1dd 8706 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( M  +  K )  <_  ( N  +  K
) )
175, 9zaddcld 9573 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
18 eluz1 9726 . . 3  |-  ( ( M  +  K )  e.  ZZ  ->  (
( N  +  K
)  e.  ( ZZ>= `  ( M  +  K
) )  <->  ( ( N  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( N  +  K
) ) ) )
1917, 18syl 14 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
( N  +  K
)  e.  ( ZZ>= `  ( M  +  K
) )  <->  ( ( N  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( N  +  K
) ) ) )
203, 16, 19mpbir2and 950 1  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001    + caddc 8002    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  seq3shft2  10703  seqshft2g  10704  shftuz  11328  isumshft  12001  mulgnndir  13688  plymullem1  15422
  Copyright terms: Public domain W3C validator