ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq3 Unicode version

Theorem bernneq3 10642
Description: A corollary of bernneq 10640. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 9184 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
21adantl 277 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  RR )
3 peano2re 8092 . . 3  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
42, 3syl 14 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  RR )
5 eluzelre 9537 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
6 reexpcl 10536 . . 3  |-  ( ( P  e.  RR  /\  N  e.  NN0 )  -> 
( P ^ N
)  e.  RR )
75, 6sylan 283 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  RR )
82ltp1d 8886 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( N  +  1 ) )
9 uz2m1nn 9604 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
109adantr 276 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  NN )
1110nnred 8931 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  RR )
1211, 2remulcld 7987 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( P  -  1 )  x.  N )  e.  RR )
13 peano2re 8092 . . . 4  |-  ( ( ( P  -  1 )  x.  N )  e.  RR  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
1412, 13syl 14 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
15 1red 7971 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  e.  RR )
16 nn0ge0 9200 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_  N )
1716adantl 277 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  N )
1810nnge1d 8961 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  <_  ( P  -  1 ) )
192, 11, 17, 18lemulge12d 8894 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( ( P  - 
1 )  x.  N
) )
202, 12, 15, 19leadd1dd 8515 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( ( ( P  -  1 )  x.  N )  +  1 ) )
215adantr 276 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  P  e.  RR )
22 simpr 110 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
23 eluzge2nn0 9568 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN0 )
24 nn0ge0 9200 . . . . . 6  |-  ( P  e.  NN0  ->  0  <_  P )
2523, 24syl 14 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <_  P )
2625adantr 276 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  P )
27 bernneq2 10641 . . . 4  |-  ( ( P  e.  RR  /\  N  e.  NN0  /\  0  <_  P )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
2821, 22, 26, 27syl3anc 1238 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
294, 14, 7, 20, 28letrd 8080 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( P ^ N ) )
302, 4, 7, 8, 29ltletrd 8379 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815    < clt 7991    <_ cle 7992    - cmin 8127   NNcn 8918   2c2 8969   NN0cn0 9175   ZZ>=cuz 9527   ^cexp 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-seqfrec 10445  df-exp 10519
This theorem is referenced by:  resqrexlemcvg  11027  resqrexlemga  11031  pw2dvds  12165  pcfaclem  12346  pcfac  12347  cvgcmp2nlemabs  14716  trilpolemlt1  14725
  Copyright terms: Public domain W3C validator