ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subidd Unicode version

Theorem subidd 7844
Description: Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
subidd  |-  ( ph  ->  ( A  -  A
)  =  0 )

Proof of Theorem subidd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 subid 7764 . 2  |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
31, 2syl 14 1  |-  ( ph  ->  ( A  -  A
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439  (class class class)co 5668   CCcc 7411   0cc0 7413    - cmin 7716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-setind 4368  ax-resscn 7500  ax-1cn 7501  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-sub 7718
This theorem is referenced by:  mul02  7928  leaddle0  8018  cru  8142  iccf1o  9484  fzocatel  9673  zmod10  9810  hashfzo  10293  hashfzp1  10295  resqrexlemnm  10514  climconst  10741  telfsumo  10923  fsumparts  10927  cvgratnnlemmn  10982  cvgratnnlemseq  10983  nn0seqcvgd  11364
  Copyright terms: Public domain W3C validator