![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssats2 | GIF version |
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
lssats2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssats2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lssats2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssats2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssats2 | ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
2 | lssats2.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
4 | lssats2.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
5 | 4 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
6 | eqid 2188 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | lssats2.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 6, 7 | lsselg 13637 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
9 | 3, 5, 1, 8 | syl3anc 1248 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
10 | lssats2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 6, 10 | lspsnid 13683 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
12 | 3, 9, 11 | syl2anc 411 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘{𝑦})) |
13 | sneq 3617 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
14 | 13 | fveq2d 5533 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦})) |
15 | 14 | eleq2d 2258 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦}))) |
16 | 15 | rspcev 2855 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑈 ∧ 𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
17 | 1, 12, 16 | syl2anc 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
18 | 17 | ex 115 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑈 → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
19 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) |
20 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
21 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
22 | 7, 10, 19, 20, 21 | lspsnel5a 13686 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈) |
23 | 22 | sseld 3168 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
24 | 23 | rexlimdva 2606 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
25 | 18, 24 | impbid 129 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
26 | eliun 3904 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) | |
27 | 25, 26 | bitr4di 198 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}))) |
28 | 27 | eqrdv 2186 | 1 ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2159 ∃wrex 2468 {csn 3606 ∪ ciun 3900 ‘cfv 5230 Basecbs 12479 LModclmod 13563 LSubSpclss 13628 LSpanclspn 13662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-ndx 12482 df-slot 12483 df-base 12485 df-plusg 12567 df-mulr 12568 df-sca 12570 df-vsca 12571 df-0g 12728 df-mgm 12797 df-sgrp 12830 df-mnd 12843 df-grp 12913 df-lmod 13565 df-lssm 13629 df-lsp 13663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |