Step | Hyp | Ref
| Expression |
1 | | simpr 110 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β π) |
2 | | lssats2.w |
. . . . . . . 8
β’ (π β π β LMod) |
3 | 2 | adantr 276 |
. . . . . . 7
β’ ((π β§ π¦ β π) β π β LMod) |
4 | | lssats2.u |
. . . . . . . . 9
β’ (π β π β π) |
5 | 4 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π¦ β π) β π β π) |
6 | | eqid 2177 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
7 | | lssats2.s |
. . . . . . . . 9
β’ π = (LSubSpβπ) |
8 | 6, 7 | lsselg 13453 |
. . . . . . . 8
β’ ((π β LMod β§ π β π β§ π¦ β π) β π¦ β (Baseβπ)) |
9 | 3, 5, 1, 8 | syl3anc 1238 |
. . . . . . 7
β’ ((π β§ π¦ β π) β π¦ β (Baseβπ)) |
10 | | lssats2.n |
. . . . . . . 8
β’ π = (LSpanβπ) |
11 | 6, 10 | lspsnid 13498 |
. . . . . . 7
β’ ((π β LMod β§ π¦ β (Baseβπ)) β π¦ β (πβ{π¦})) |
12 | 3, 9, 11 | syl2anc 411 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β (πβ{π¦})) |
13 | | sneq 3605 |
. . . . . . . . 9
β’ (π₯ = π¦ β {π₯} = {π¦}) |
14 | 13 | fveq2d 5521 |
. . . . . . . 8
β’ (π₯ = π¦ β (πβ{π₯}) = (πβ{π¦})) |
15 | 14 | eleq2d 2247 |
. . . . . . 7
β’ (π₯ = π¦ β (π¦ β (πβ{π₯}) β π¦ β (πβ{π¦}))) |
16 | 15 | rspcev 2843 |
. . . . . 6
β’ ((π¦ β π β§ π¦ β (πβ{π¦})) β βπ₯ β π π¦ β (πβ{π₯})) |
17 | 1, 12, 16 | syl2anc 411 |
. . . . 5
β’ ((π β§ π¦ β π) β βπ₯ β π π¦ β (πβ{π₯})) |
18 | 17 | ex 115 |
. . . 4
β’ (π β (π¦ β π β βπ₯ β π π¦ β (πβ{π₯}))) |
19 | 2 | adantr 276 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π β LMod) |
20 | 4 | adantr 276 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π β π) |
21 | | simpr 110 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π₯ β π) |
22 | 7, 10, 19, 20, 21 | lspsnel5a 13501 |
. . . . . 6
β’ ((π β§ π₯ β π) β (πβ{π₯}) β π) |
23 | 22 | sseld 3156 |
. . . . 5
β’ ((π β§ π₯ β π) β (π¦ β (πβ{π₯}) β π¦ β π)) |
24 | 23 | rexlimdva 2594 |
. . . 4
β’ (π β (βπ₯ β π π¦ β (πβ{π₯}) β π¦ β π)) |
25 | 18, 24 | impbid 129 |
. . 3
β’ (π β (π¦ β π β βπ₯ β π π¦ β (πβ{π₯}))) |
26 | | eliun 3892 |
. . 3
β’ (π¦ β βͺ π₯ β π (πβ{π₯}) β βπ₯ β π π¦ β (πβ{π₯})) |
27 | 25, 26 | bitr4di 198 |
. 2
β’ (π β (π¦ β π β π¦ β βͺ
π₯ β π (πβ{π₯}))) |
28 | 27 | eqrdv 2175 |
1
β’ (π β π = βͺ π₯ β π (πβ{π₯})) |