ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu Unicode version

Theorem ltexprlemopu 7353
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7363. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopu  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopu
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemelu 7349 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
32simprbi 271 . . 3  |-  ( r  e.  ( 2nd `  C
)  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
4 19.42v 1858 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
5 19.42v 1858 . . . . . . . . 9  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
65anbi2i 450 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
74, 6bitri 183 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8 ltrelpr 7255 . . . . . . . . . . . . . . 15  |-  <P  C_  ( P.  X.  P. )
98brel 4549 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 113 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 7225 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prnminu 7239 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1412, 13sylan 279 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1514adantrl 467 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  ->  E. s  e.  ( 2nd `  B
) s  <Q  (
y  +Q  r ) )
1615adantrl 467 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
17 ltdfpr 7256 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) ) )
1817biimpd 143 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )
199, 18mpcom 36 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
2019ad2antrr 477 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
219simpld 111 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  A  e. 
P. )
2221ad2antrr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  A  e.  P. )
2322adantr 272 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  e.  P. )
24 simplrr 508 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) )
2524simpld 111 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  ( 1st `  A
) )
2625adantr 272 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
27 simprrl 511 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 2nd `  A ) )
28 prop 7225 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
29 prltlu 7237 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3028, 29syl3an1 1230 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3123, 26, 27, 30syl3anc 1197 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  t )
32 simplll 505 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  <P  B )
33 simprrr 512 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 1st `  B ) )
34 simplrl 507 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
35 prltlu 7237 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3612, 35syl3an1 1230 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3732, 33, 34, 36syl3anc 1197 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  <Q  s )
38 ltsonq 7148 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
39 ltrelnq 7115 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4038, 39sotri 4890 . . . . . . . . . . . . 13  |-  ( ( y  <Q  t  /\  t  <Q  s )  -> 
y  <Q  s )
4131, 37, 40syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  s )
4220, 41rexlimddv 2526 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  <Q  s )
43 elprnql 7231 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4428, 43sylan 279 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4522, 25, 44syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  Q. )
46 elprnqu 7232 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4712, 46sylan 279 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4847ad2ant2r 498 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  s  e.  Q. )
49 ltexnqq 7158 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. q  e.  Q.  (
y  +Q  q )  =  s ) )
5045, 48, 49syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  <Q  s  <->  E. q  e.  Q.  ( y  +Q  q )  =  s ) )
5142, 50mpbid 146 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  =  s )
52 simprr 504 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  =  s )
53 simplrr 508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  <Q  ( y  +Q  r ) )
5452, 53eqbrtrd 3913 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
55 simprl 503 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  e.  Q. )
56 simplrl 507 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  r  e.  Q. )
5756adantr 272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  r  e.  Q. )
5845adantr 272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  Q. )
59 ltanqg 7150 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6055, 57, 58, 59syl3anc 1197 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6154, 60mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  <Q  r )
6225adantr 272 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  ( 1st `  A ) )
63 simplrl 507 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  e.  ( 2nd `  B ) )
6452, 63eqeltrd 2189 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
6562, 64jca 302 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
6661, 55, 65jca32 306 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  /\  ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) ) )
6766expr 370 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  q  e.  Q. )  ->  (
( y  +Q  q
)  =  s  -> 
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6867reximdva 2506 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  ( E. q  e.  Q.  ( y  +Q  q
)  =  s  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6951, 68mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7016, 69rexlimddv 2526 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7170eximi 1560 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
727, 71sylbir 134 . . . . . 6  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
73 rexcom4 2678 . . . . . 6  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. y E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7472, 73sylibr 133 . . . . 5  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
75 19.42v 1858 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
76 19.42v 1858 . . . . . . . 8  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
7776anbi2i 450 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7875, 77bitri 183 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7978rexbii 2414 . . . . 5  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8074, 79sylib 121 . . . 4  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
811ltexprlemelu 7349 . . . . . 6  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
8281anbi2i 450 . . . . 5  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8382rexbii 2414 . . . 4  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  C
) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8480, 83sylibr 133 . . 3  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
853, 84sylanr2 400 . 2  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
86853impb 1158 1  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 943    = wceq 1312   E.wex 1449    e. wcel 1461   E.wrex 2389   {crab 2392   <.cop 3494   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   1stc1st 5988   2ndc2nd 5989   Q.cnq 7030    +Q cplq 7032    <Q cltq 7035   P.cnp 7041    <P cltp 7045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-pli 7055  df-mi 7056  df-lti 7057  df-plpq 7094  df-mpq 7095  df-enq 7097  df-nqqs 7098  df-plqqs 7099  df-mqqs 7100  df-1nqqs 7101  df-ltnqqs 7103  df-inp 7216  df-iltp 7220
This theorem is referenced by:  ltexprlemrnd  7355
  Copyright terms: Public domain W3C validator