ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu Unicode version

Theorem ltexprlemopu 7593
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7603. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopu  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopu
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemelu 7589 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
32simprbi 275 . . 3  |-  ( r  e.  ( 2nd `  C
)  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
4 19.42v 1906 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
5 19.42v 1906 . . . . . . . . 9  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
65anbi2i 457 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
74, 6bitri 184 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8 ltrelpr 7495 . . . . . . . . . . . . . . 15  |-  <P  C_  ( P.  X.  P. )
98brel 4675 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 114 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 7465 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prnminu 7479 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1412, 13sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1514adantrl 478 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  ->  E. s  e.  ( 2nd `  B
) s  <Q  (
y  +Q  r ) )
1615adantrl 478 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
17 ltdfpr 7496 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) ) )
1817biimpd 144 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )
199, 18mpcom 36 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
2019ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
219simpld 112 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  A  e. 
P. )
2221ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  A  e.  P. )
2322adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  e.  P. )
24 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) )
2524simpld 112 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  ( 1st `  A
) )
2625adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
27 simprrl 539 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 2nd `  A ) )
28 prop 7465 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
29 prltlu 7477 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3028, 29syl3an1 1271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3123, 26, 27, 30syl3anc 1238 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  t )
32 simplll 533 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  <P  B )
33 simprrr 540 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 1st `  B ) )
34 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
35 prltlu 7477 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3612, 35syl3an1 1271 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3732, 33, 34, 36syl3anc 1238 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  <Q  s )
38 ltsonq 7388 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
39 ltrelnq 7355 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4038, 39sotri 5020 . . . . . . . . . . . . 13  |-  ( ( y  <Q  t  /\  t  <Q  s )  -> 
y  <Q  s )
4131, 37, 40syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  s )
4220, 41rexlimddv 2599 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  <Q  s )
43 elprnql 7471 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4428, 43sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4522, 25, 44syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  Q. )
46 elprnqu 7472 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4712, 46sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4847ad2ant2r 509 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  s  e.  Q. )
49 ltexnqq 7398 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. q  e.  Q.  (
y  +Q  q )  =  s ) )
5045, 48, 49syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  <Q  s  <->  E. q  e.  Q.  ( y  +Q  q )  =  s ) )
5142, 50mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  =  s )
52 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  =  s )
53 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  <Q  ( y  +Q  r ) )
5452, 53eqbrtrd 4022 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
55 simprl 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  e.  Q. )
56 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  r  e.  Q. )
5756adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  r  e.  Q. )
5845adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  Q. )
59 ltanqg 7390 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6055, 57, 58, 59syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6154, 60mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  <Q  r )
6225adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  ( 1st `  A ) )
63 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  e.  ( 2nd `  B ) )
6452, 63eqeltrd 2254 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
6562, 64jca 306 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
6661, 55, 65jca32 310 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  /\  ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) ) )
6766expr 375 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  q  e.  Q. )  ->  (
( y  +Q  q
)  =  s  -> 
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6867reximdva 2579 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  ( E. q  e.  Q.  ( y  +Q  q
)  =  s  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6951, 68mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7016, 69rexlimddv 2599 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7170eximi 1600 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
727, 71sylbir 135 . . . . . 6  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
73 rexcom4 2760 . . . . . 6  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. y E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7472, 73sylibr 134 . . . . 5  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
75 19.42v 1906 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
76 19.42v 1906 . . . . . . . 8  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
7776anbi2i 457 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7875, 77bitri 184 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7978rexbii 2484 . . . . 5  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8074, 79sylib 122 . . . 4  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
811ltexprlemelu 7589 . . . . . 6  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
8281anbi2i 457 . . . . 5  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8382rexbii 2484 . . . 4  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  C
) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8480, 83sylibr 134 . . 3  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
853, 84sylanr2 405 . 2  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
86853impb 1199 1  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   {crab 2459   <.cop 3594   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1stc1st 6133   2ndc2nd 6134   Q.cnq 7270    +Q cplq 7272    <Q cltq 7275   P.cnp 7281    <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-ltnqqs 7343  df-inp 7456  df-iltp 7460
This theorem is referenced by:  ltexprlemrnd  7595
  Copyright terms: Public domain W3C validator