ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu Unicode version

Theorem ltexprlemopu 7716
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7726. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopu  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopu
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemelu 7712 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
32simprbi 275 . . 3  |-  ( r  e.  ( 2nd `  C
)  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
4 19.42v 1930 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
5 19.42v 1930 . . . . . . . . 9  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
65anbi2i 457 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
74, 6bitri 184 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8 ltrelpr 7618 . . . . . . . . . . . . . . 15  |-  <P  C_  ( P.  X.  P. )
98brel 4727 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 114 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 7588 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prnminu 7602 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1412, 13sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1514adantrl 478 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  ->  E. s  e.  ( 2nd `  B
) s  <Q  (
y  +Q  r ) )
1615adantrl 478 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
17 ltdfpr 7619 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) ) )
1817biimpd 144 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )
199, 18mpcom 36 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
2019ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
219simpld 112 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  A  e. 
P. )
2221ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  A  e.  P. )
2322adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  e.  P. )
24 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) )
2524simpld 112 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  ( 1st `  A
) )
2625adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
27 simprrl 539 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 2nd `  A ) )
28 prop 7588 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
29 prltlu 7600 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3028, 29syl3an1 1283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3123, 26, 27, 30syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  t )
32 simplll 533 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  <P  B )
33 simprrr 540 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 1st `  B ) )
34 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
35 prltlu 7600 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3612, 35syl3an1 1283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3732, 33, 34, 36syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  <Q  s )
38 ltsonq 7511 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
39 ltrelnq 7478 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4038, 39sotri 5078 . . . . . . . . . . . . 13  |-  ( ( y  <Q  t  /\  t  <Q  s )  -> 
y  <Q  s )
4131, 37, 40syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  s )
4220, 41rexlimddv 2628 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  <Q  s )
43 elprnql 7594 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4428, 43sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4522, 25, 44syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  Q. )
46 elprnqu 7595 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4712, 46sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4847ad2ant2r 509 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  s  e.  Q. )
49 ltexnqq 7521 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. q  e.  Q.  (
y  +Q  q )  =  s ) )
5045, 48, 49syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  <Q  s  <->  E. q  e.  Q.  ( y  +Q  q )  =  s ) )
5142, 50mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  =  s )
52 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  =  s )
53 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  <Q  ( y  +Q  r ) )
5452, 53eqbrtrd 4066 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
55 simprl 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  e.  Q. )
56 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  r  e.  Q. )
5756adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  r  e.  Q. )
5845adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  Q. )
59 ltanqg 7513 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6055, 57, 58, 59syl3anc 1250 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6154, 60mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  <Q  r )
6225adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  ( 1st `  A ) )
63 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  e.  ( 2nd `  B ) )
6452, 63eqeltrd 2282 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
6562, 64jca 306 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
6661, 55, 65jca32 310 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  /\  ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) ) )
6766expr 375 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  q  e.  Q. )  ->  (
( y  +Q  q
)  =  s  -> 
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6867reximdva 2608 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  ( E. q  e.  Q.  ( y  +Q  q
)  =  s  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6951, 68mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7016, 69rexlimddv 2628 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7170eximi 1623 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
727, 71sylbir 135 . . . . . 6  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
73 rexcom4 2795 . . . . . 6  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. y E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7472, 73sylibr 134 . . . . 5  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
75 19.42v 1930 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
76 19.42v 1930 . . . . . . . 8  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
7776anbi2i 457 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7875, 77bitri 184 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7978rexbii 2513 . . . . 5  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8074, 79sylib 122 . . . 4  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
811ltexprlemelu 7712 . . . . . 6  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
8281anbi2i 457 . . . . 5  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8382rexbii 2513 . . . 4  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  C
) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8480, 83sylibr 134 . . 3  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
853, 84sylanr2 405 . 2  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
86853impb 1202 1  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   {crab 2488   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    +Q cplq 7395    <Q cltq 7398   P.cnp 7404    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-ltnqqs 7466  df-inp 7579  df-iltp 7583
This theorem is referenced by:  ltexprlemrnd  7718
  Copyright terms: Public domain W3C validator