ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprlem Unicode version

Theorem ltaprlem 7652
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
Assertion
Ref Expression
ltaprlem  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )

Proof of Theorem ltaprlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7647 . . . 4  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
21adantr 276 . . 3  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3 simplr 528 . . . . . 6  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  C  e.  P. )
4 ltrelpr 7539 . . . . . . . . . 10  |-  <P  C_  ( P.  X.  P. )
54brel 4699 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
65simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
76adantr 276 . . . . . . 7  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  A  e.  P. )
87adantr 276 . . . . . 6  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  A  e.  P. )
9 addclpr 7571 . . . . . 6  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
103, 8, 9syl2anc 411 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  e.  P. )
11 simprl 529 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  x  e.  P. )
12 ltaddpr 7631 . . . . 5  |-  ( ( ( C  +P.  A
)  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x ) )
1310, 11, 12syl2anc 411 . . . 4  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  <P  (
( C  +P.  A
)  +P.  x )
)
14 addassprg 7613 . . . . . 6  |-  ( ( C  e.  P.  /\  A  e.  P.  /\  x  e.  P. )  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
153, 8, 11, 14syl3anc 1249 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
16 oveq2 5908 . . . . . 6  |-  ( ( A  +P.  x )  =  B  ->  ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B
) )
1716ad2antll 491 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  ( A  +P.  x
) )  =  ( C  +P.  B ) )
1815, 17eqtrd 2222 . . . 4  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) )
1913, 18breqtrd 4047 . . 3  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  <P  ( C  +P.  B ) )
202, 19rexlimddv 2612 . 2  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) )
2120expcom 116 1  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   E.wrex 2469   class class class wbr 4021  (class class class)co 5900   P.cnp 7325    +P. cpp 7327    <P cltp 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-eprel 4310  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-1o 6445  df-2o 6446  df-oadd 6449  df-omul 6450  df-er 6563  df-ec 6565  df-qs 6569  df-ni 7338  df-pli 7339  df-mi 7340  df-lti 7341  df-plpq 7378  df-mpq 7379  df-enq 7381  df-nqqs 7382  df-plqqs 7383  df-mqqs 7384  df-1nqqs 7385  df-rq 7386  df-ltnqqs 7387  df-enq0 7458  df-nq0 7459  df-0nq0 7460  df-plq0 7461  df-mq0 7462  df-inp 7500  df-iplp 7502  df-iltp 7504
This theorem is referenced by:  ltaprg  7653
  Copyright terms: Public domain W3C validator