ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prplnqu Unicode version

Theorem prplnqu 7733
Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
prplnqu.x  |-  ( ph  ->  X  e.  P. )
prplnqu.q  |-  ( ph  ->  Q  e.  Q. )
prplnqu.sum  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
Assertion
Ref Expression
prplnqu  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Distinct variable groups:    A, l, u   
y, A    Q, l, u    y, Q    y, X
Allowed substitution hints:    ph( y, u, l)    X( u, l)

Proof of Theorem prplnqu
Dummy variables  f  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prplnqu.q . . . . . . . 8  |-  ( ph  ->  Q  e.  Q. )
2 nqprlu 7660 . . . . . . . 8  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
31, 2syl 14 . . . . . . 7  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
4 prplnqu.x . . . . . . 7  |-  ( ph  ->  X  e.  P. )
5 ltaddpr 7710 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
63, 4, 5syl2anc 411 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
7 addcomprg 7691 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
83, 4, 7syl2anc 411 . . . . . 6  |-  ( ph  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
96, 8breqtrd 4070 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
10 prplnqu.sum . . . . . 6  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
11 addclpr 7650 . . . . . . . . 9  |-  ( ( X  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
124, 3, 11syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
13 prop 7588 . . . . . . . . 9  |-  ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) >.  e.  P. )
14 elprnqu 7595 . . . . . . . . 9  |-  ( (
<. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) >.  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1513, 14sylan 283 . . . . . . . 8  |-  ( ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1612, 10, 15syl2anc 411 . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
17 nqpru 7665 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
1816, 12, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
1910, 18mpbid 147 . . . . 5  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
20 ltsopr 7709 . . . . . 6  |-  <P  Or  P.
21 ltrelpr 7618 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
2220, 21sotri 5078 . . . . 5  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
239, 19, 22syl2anc 411 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
24 ltnqpr 7706 . . . . 5  |-  ( ( Q  e.  Q.  /\  A  e.  Q. )  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
251, 16, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
2623, 25mpbird 167 . . 3  |-  ( ph  ->  Q  <Q  A )
27 ltexnqi 7522 . . 3  |-  ( Q 
<Q  A  ->  E. z  e.  Q.  ( Q  +Q  z )  =  A )
2826, 27syl 14 . 2  |-  ( ph  ->  E. z  e.  Q.  ( Q  +Q  z
)  =  A )
2919adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
301adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  Q  e.  Q. )
31 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  Q. )
32 addcomnqg 7494 . . . . . . . . . 10  |-  ( ( Q  e.  Q.  /\  z  e.  Q. )  ->  ( Q  +Q  z
)  =  ( z  +Q  Q ) )
3330, 31, 32syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  ( z  +Q  Q ) )
34 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  A )
3533, 34eqtr3d 2240 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  +Q  Q
)  =  A )
36 breq2 4048 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
l  <Q  ( z  +Q  Q )  <->  l  <Q  A ) )
3736abbidv 2323 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { l  |  l  <Q  (
z  +Q  Q ) }  =  { l  |  l  <Q  A }
)
38 breq1 4047 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
( z  +Q  Q
)  <Q  u  <->  A  <Q  u ) )
3938abbidv 2323 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { u  |  ( z  +Q  Q )  <Q  u }  =  { u  |  A  <Q  u }
)
4037, 39opeq12d 3827 . . . . . . . 8  |-  ( ( z  +Q  Q )  =  A  ->  <. { l  |  l  <Q  (
z  +Q  Q ) } ,  { u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
4135, 40syl 14 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
42 addnqpr 7674 . . . . . . . 8  |-  ( ( z  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4331, 30, 42syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4441, 43eqtr3d 2240 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4529, 44breqtrd 4070 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
46 ltaprg 7732 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
4746adantl 277 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( f  <P  g  <->  ( h  +P.  f ) 
<P  ( h  +P.  g
) ) )
484adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  e.  P. )
49 nqprlu 7660 . . . . . . 7  |-  ( z  e.  Q.  ->  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  e.  P. )
5031, 49syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  e.  P. )
5130, 2syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
52 addcomprg 7691 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
5352adantl 277 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
5447, 48, 50, 51, 53caovord2d 6116 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  <P  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  <-> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
5545, 54mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
56 nqpru 7665 . . . . 5  |-  ( ( z  e.  Q.  /\  X  e.  P. )  ->  ( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5731, 48, 56syl2anc 411 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5855, 57mpbird 167 . . 3  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  ( 2nd `  X ) )
59 oveq1 5951 . . . . 5  |-  ( y  =  z  ->  (
y  +Q  Q )  =  ( z  +Q  Q ) )
6059eqeq1d 2214 . . . 4  |-  ( y  =  z  ->  (
( y  +Q  Q
)  =  A  <->  ( z  +Q  Q )  =  A ) )
6160rspcev 2877 . . 3  |-  ( ( z  e.  ( 2nd `  X )  /\  (
z  +Q  Q )  =  A )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6258, 35, 61syl2anc 411 . 2  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6328, 62rexlimddv 2628 1  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    +Q cplq 7395    <Q cltq 7398   P.cnp 7404    +P. cpp 7406    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-iltp 7583
This theorem is referenced by:  caucvgprprlemexbt  7819
  Copyright terms: Public domain W3C validator