| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prplnqu | Unicode version | ||
| Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| Ref | Expression |
|---|---|
| prplnqu.x |
|
| prplnqu.q |
|
| prplnqu.sum |
|
| Ref | Expression |
|---|---|
| prplnqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prplnqu.q |
. . . . . . . 8
| |
| 2 | nqprlu 7734 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | prplnqu.x |
. . . . . . 7
| |
| 5 | ltaddpr 7784 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . 6
|
| 7 | addcomprg 7765 |
. . . . . . 7
| |
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . 6
|
| 9 | 6, 8 | breqtrd 4109 |
. . . . 5
|
| 10 | prplnqu.sum |
. . . . . 6
| |
| 11 | addclpr 7724 |
. . . . . . . . 9
| |
| 12 | 4, 3, 11 | syl2anc 411 |
. . . . . . . 8
|
| 13 | prop 7662 |
. . . . . . . . 9
| |
| 14 | elprnqu 7669 |
. . . . . . . . 9
| |
| 15 | 13, 14 | sylan 283 |
. . . . . . . 8
|
| 16 | 12, 10, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | nqpru 7739 |
. . . . . . 7
| |
| 18 | 16, 12, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 10, 18 | mpbid 147 |
. . . . 5
|
| 20 | ltsopr 7783 |
. . . . . 6
| |
| 21 | ltrelpr 7692 |
. . . . . 6
| |
| 22 | 20, 21 | sotri 5124 |
. . . . 5
|
| 23 | 9, 19, 22 | syl2anc 411 |
. . . 4
|
| 24 | ltnqpr 7780 |
. . . . 5
| |
| 25 | 1, 16, 24 | syl2anc 411 |
. . . 4
|
| 26 | 23, 25 | mpbird 167 |
. . 3
|
| 27 | ltexnqi 7596 |
. . 3
| |
| 28 | 26, 27 | syl 14 |
. 2
|
| 29 | 19 | adantr 276 |
. . . . . 6
|
| 30 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 31 | simprl 529 |
. . . . . . . . . 10
| |
| 32 | addcomnqg 7568 |
. . . . . . . . . 10
| |
| 33 | 30, 31, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | simprr 531 |
. . . . . . . . 9
| |
| 35 | 33, 34 | eqtr3d 2264 |
. . . . . . . 8
|
| 36 | breq2 4087 |
. . . . . . . . . 10
| |
| 37 | 36 | abbidv 2347 |
. . . . . . . . 9
|
| 38 | breq1 4086 |
. . . . . . . . . 10
| |
| 39 | 38 | abbidv 2347 |
. . . . . . . . 9
|
| 40 | 37, 39 | opeq12d 3865 |
. . . . . . . 8
|
| 41 | 35, 40 | syl 14 |
. . . . . . 7
|
| 42 | addnqpr 7748 |
. . . . . . . 8
| |
| 43 | 31, 30, 42 | syl2anc 411 |
. . . . . . 7
|
| 44 | 41, 43 | eqtr3d 2264 |
. . . . . 6
|
| 45 | 29, 44 | breqtrd 4109 |
. . . . 5
|
| 46 | ltaprg 7806 |
. . . . . . 7
| |
| 47 | 46 | adantl 277 |
. . . . . 6
|
| 48 | 4 | adantr 276 |
. . . . . 6
|
| 49 | nqprlu 7734 |
. . . . . . 7
| |
| 50 | 31, 49 | syl 14 |
. . . . . 6
|
| 51 | 30, 2 | syl 14 |
. . . . . 6
|
| 52 | addcomprg 7765 |
. . . . . . 7
| |
| 53 | 52 | adantl 277 |
. . . . . 6
|
| 54 | 47, 48, 50, 51, 53 | caovord2d 6175 |
. . . . 5
|
| 55 | 45, 54 | mpbird 167 |
. . . 4
|
| 56 | nqpru 7739 |
. . . . 5
| |
| 57 | 31, 48, 56 | syl2anc 411 |
. . . 4
|
| 58 | 55, 57 | mpbird 167 |
. . 3
|
| 59 | oveq1 6008 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2238 |
. . . 4
|
| 61 | 60 | rspcev 2907 |
. . 3
|
| 62 | 58, 35, 61 | syl2anc 411 |
. 2
|
| 63 | 28, 62 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-iltp 7657 |
| This theorem is referenced by: caucvgprprlemexbt 7893 |
| Copyright terms: Public domain | W3C validator |