| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prplnqu | Unicode version | ||
| Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| Ref | Expression |
|---|---|
| prplnqu.x |
|
| prplnqu.q |
|
| prplnqu.sum |
|
| Ref | Expression |
|---|---|
| prplnqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prplnqu.q |
. . . . . . . 8
| |
| 2 | nqprlu 7662 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | prplnqu.x |
. . . . . . 7
| |
| 5 | ltaddpr 7712 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . 6
|
| 7 | addcomprg 7693 |
. . . . . . 7
| |
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . 6
|
| 9 | 6, 8 | breqtrd 4071 |
. . . . 5
|
| 10 | prplnqu.sum |
. . . . . 6
| |
| 11 | addclpr 7652 |
. . . . . . . . 9
| |
| 12 | 4, 3, 11 | syl2anc 411 |
. . . . . . . 8
|
| 13 | prop 7590 |
. . . . . . . . 9
| |
| 14 | elprnqu 7597 |
. . . . . . . . 9
| |
| 15 | 13, 14 | sylan 283 |
. . . . . . . 8
|
| 16 | 12, 10, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | nqpru 7667 |
. . . . . . 7
| |
| 18 | 16, 12, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 10, 18 | mpbid 147 |
. . . . 5
|
| 20 | ltsopr 7711 |
. . . . . 6
| |
| 21 | ltrelpr 7620 |
. . . . . 6
| |
| 22 | 20, 21 | sotri 5079 |
. . . . 5
|
| 23 | 9, 19, 22 | syl2anc 411 |
. . . 4
|
| 24 | ltnqpr 7708 |
. . . . 5
| |
| 25 | 1, 16, 24 | syl2anc 411 |
. . . 4
|
| 26 | 23, 25 | mpbird 167 |
. . 3
|
| 27 | ltexnqi 7524 |
. . 3
| |
| 28 | 26, 27 | syl 14 |
. 2
|
| 29 | 19 | adantr 276 |
. . . . . 6
|
| 30 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 31 | simprl 529 |
. . . . . . . . . 10
| |
| 32 | addcomnqg 7496 |
. . . . . . . . . 10
| |
| 33 | 30, 31, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | simprr 531 |
. . . . . . . . 9
| |
| 35 | 33, 34 | eqtr3d 2240 |
. . . . . . . 8
|
| 36 | breq2 4049 |
. . . . . . . . . 10
| |
| 37 | 36 | abbidv 2323 |
. . . . . . . . 9
|
| 38 | breq1 4048 |
. . . . . . . . . 10
| |
| 39 | 38 | abbidv 2323 |
. . . . . . . . 9
|
| 40 | 37, 39 | opeq12d 3827 |
. . . . . . . 8
|
| 41 | 35, 40 | syl 14 |
. . . . . . 7
|
| 42 | addnqpr 7676 |
. . . . . . . 8
| |
| 43 | 31, 30, 42 | syl2anc 411 |
. . . . . . 7
|
| 44 | 41, 43 | eqtr3d 2240 |
. . . . . 6
|
| 45 | 29, 44 | breqtrd 4071 |
. . . . 5
|
| 46 | ltaprg 7734 |
. . . . . . 7
| |
| 47 | 46 | adantl 277 |
. . . . . 6
|
| 48 | 4 | adantr 276 |
. . . . . 6
|
| 49 | nqprlu 7662 |
. . . . . . 7
| |
| 50 | 31, 49 | syl 14 |
. . . . . 6
|
| 51 | 30, 2 | syl 14 |
. . . . . 6
|
| 52 | addcomprg 7693 |
. . . . . . 7
| |
| 53 | 52 | adantl 277 |
. . . . . 6
|
| 54 | 47, 48, 50, 51, 53 | caovord2d 6118 |
. . . . 5
|
| 55 | 45, 54 | mpbird 167 |
. . . 4
|
| 56 | nqpru 7667 |
. . . . 5
| |
| 57 | 31, 48, 56 | syl2anc 411 |
. . . 4
|
| 58 | 55, 57 | mpbird 167 |
. . 3
|
| 59 | oveq1 5953 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2214 |
. . . 4
|
| 61 | 60 | rspcev 2877 |
. . 3
|
| 62 | 58, 35, 61 | syl2anc 411 |
. 2
|
| 63 | 28, 62 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-iplp 7583 df-iltp 7585 |
| This theorem is referenced by: caucvgprprlemexbt 7821 |
| Copyright terms: Public domain | W3C validator |