ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prplnqu Unicode version

Theorem prplnqu 7329
Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
prplnqu.x  |-  ( ph  ->  X  e.  P. )
prplnqu.q  |-  ( ph  ->  Q  e.  Q. )
prplnqu.sum  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
Assertion
Ref Expression
prplnqu  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Distinct variable groups:    A, l, u   
y, A    Q, l, u    y, Q    y, X
Allowed substitution hints:    ph( y, u, l)    X( u, l)

Proof of Theorem prplnqu
Dummy variables  f  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prplnqu.q . . . . . . . 8  |-  ( ph  ->  Q  e.  Q. )
2 nqprlu 7256 . . . . . . . 8  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
31, 2syl 14 . . . . . . 7  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
4 prplnqu.x . . . . . . 7  |-  ( ph  ->  X  e.  P. )
5 ltaddpr 7306 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
63, 4, 5syl2anc 406 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
7 addcomprg 7287 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
83, 4, 7syl2anc 406 . . . . . 6  |-  ( ph  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
96, 8breqtrd 3899 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
10 prplnqu.sum . . . . . 6  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
11 addclpr 7246 . . . . . . . . 9  |-  ( ( X  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
124, 3, 11syl2anc 406 . . . . . . . 8  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
13 prop 7184 . . . . . . . . 9  |-  ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) >.  e.  P. )
14 elprnqu 7191 . . . . . . . . 9  |-  ( (
<. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) >.  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1513, 14sylan 279 . . . . . . . 8  |-  ( ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1612, 10, 15syl2anc 406 . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
17 nqpru 7261 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
1816, 12, 17syl2anc 406 . . . . . 6  |-  ( ph  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
1910, 18mpbid 146 . . . . 5  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
20 ltsopr 7305 . . . . . 6  |-  <P  Or  P.
21 ltrelpr 7214 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
2220, 21sotri 4870 . . . . 5  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
239, 19, 22syl2anc 406 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
24 ltnqpr 7302 . . . . 5  |-  ( ( Q  e.  Q.  /\  A  e.  Q. )  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
251, 16, 24syl2anc 406 . . . 4  |-  ( ph  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
2623, 25mpbird 166 . . 3  |-  ( ph  ->  Q  <Q  A )
27 ltexnqi 7118 . . 3  |-  ( Q 
<Q  A  ->  E. z  e.  Q.  ( Q  +Q  z )  =  A )
2826, 27syl 14 . 2  |-  ( ph  ->  E. z  e.  Q.  ( Q  +Q  z
)  =  A )
2919adantr 272 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
301adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  Q  e.  Q. )
31 simprl 501 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  Q. )
32 addcomnqg 7090 . . . . . . . . . 10  |-  ( ( Q  e.  Q.  /\  z  e.  Q. )  ->  ( Q  +Q  z
)  =  ( z  +Q  Q ) )
3330, 31, 32syl2anc 406 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  ( z  +Q  Q ) )
34 simprr 502 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  A )
3533, 34eqtr3d 2134 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  +Q  Q
)  =  A )
36 breq2 3879 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
l  <Q  ( z  +Q  Q )  <->  l  <Q  A ) )
3736abbidv 2217 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { l  |  l  <Q  (
z  +Q  Q ) }  =  { l  |  l  <Q  A }
)
38 breq1 3878 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
( z  +Q  Q
)  <Q  u  <->  A  <Q  u ) )
3938abbidv 2217 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { u  |  ( z  +Q  Q )  <Q  u }  =  { u  |  A  <Q  u }
)
4037, 39opeq12d 3660 . . . . . . . 8  |-  ( ( z  +Q  Q )  =  A  ->  <. { l  |  l  <Q  (
z  +Q  Q ) } ,  { u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
4135, 40syl 14 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
42 addnqpr 7270 . . . . . . . 8  |-  ( ( z  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4331, 30, 42syl2anc 406 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4441, 43eqtr3d 2134 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4529, 44breqtrd 3899 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
46 ltaprg 7328 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
4746adantl 273 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( f  <P  g  <->  ( h  +P.  f ) 
<P  ( h  +P.  g
) ) )
484adantr 272 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  e.  P. )
49 nqprlu 7256 . . . . . . 7  |-  ( z  e.  Q.  ->  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  e.  P. )
5031, 49syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  e.  P. )
5130, 2syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
52 addcomprg 7287 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
5352adantl 273 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
5447, 48, 50, 51, 53caovord2d 5872 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  <P  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  <-> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
5545, 54mpbird 166 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
56 nqpru 7261 . . . . 5  |-  ( ( z  e.  Q.  /\  X  e.  P. )  ->  ( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5731, 48, 56syl2anc 406 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5855, 57mpbird 166 . . 3  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  ( 2nd `  X ) )
59 oveq1 5713 . . . . 5  |-  ( y  =  z  ->  (
y  +Q  Q )  =  ( z  +Q  Q ) )
6059eqeq1d 2108 . . . 4  |-  ( y  =  z  ->  (
( y  +Q  Q
)  =  A  <->  ( z  +Q  Q )  =  A ) )
6160rspcev 2744 . . 3  |-  ( ( z  e.  ( 2nd `  X )  /\  (
z  +Q  Q )  =  A )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6258, 35, 61syl2anc 406 . 2  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6328, 62rexlimddv 2513 1  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   {cab 2086   E.wrex 2376   <.cop 3477   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   1stc1st 5967   2ndc2nd 5968   Q.cnq 6989    +Q cplq 6991    <Q cltq 6994   P.cnp 7000    +P. cpp 7002    <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-iltp 7179
This theorem is referenced by:  caucvgprprlemexbt  7415
  Copyright terms: Public domain W3C validator